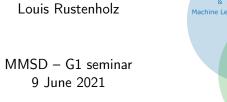
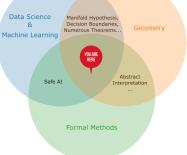
Tropical AI for Safe AI A Story of Geometrical Data Science Tropical Abstract Interpretation for Verified Neural Networks



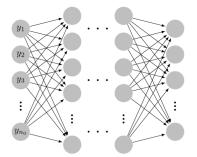


Disclaimer

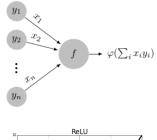
- Miscellaneous stories of Geometrical Data Science.
- Background on tropical geometry, verification of neural networks, abstract interpretation.
- M1 supervised by Éric Goubault and Sylvie Putot at École Polytechnique.
- Our pipeline : work in progress, ideas worth exploring, but complexity yet unsatisfactory (exponential operation hidden between cubical ones).

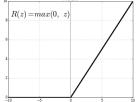
Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion

Neural Networks



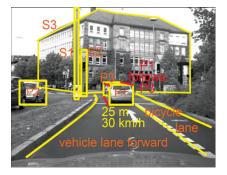
$$\mathbb{R}^n \to \mathbb{R}^m$$



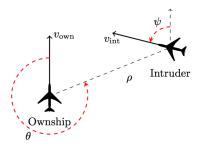


Many applications...

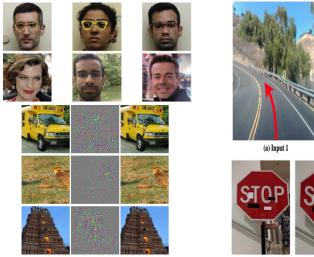
• Vision, self-driving cars



• Aviation : ACAS Xu



.but Neural Networks are unsafe



"Ostrich" Tropical AI for Safe AI

(b) Input 2 (darker version of 1)

 Geometrical Data Science
 Tropical geometry
 Safe Neural Networks
 Abstract Interpretation
 Our pipeline
 Conclusion

 000000000
 00000000
 000000
 00000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Machine Learning is geometric!

- In many ways, Data Science and Machine Learning happen where Geometry and Statistics meet.
- Tap into Geometry for understanding, theorems, and solutions !
- ... Geometric ideas for verification problems?

Geometrical Data Science

Geometrical Data Science

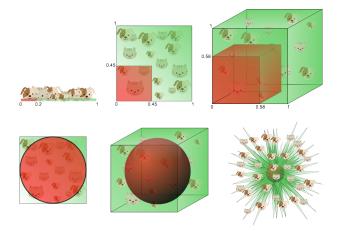
Many of ML problems & solutions lie in geometry.

- Curse of dimensionality
- Manifold hypothesis
- Decision boundaries, Kernel trick, Universal Approximation Theorem, ...
- Tropical geometry of Neural Networks

 Geometrical Data Science
 Tropical geometry
 Safe Neural Networks
 Abstract Interpretation
 Our pipeline
 Conclusion

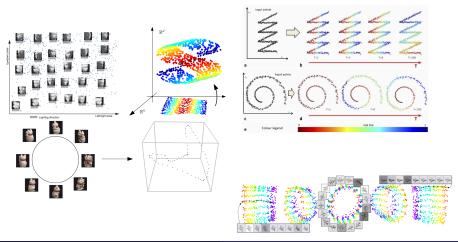
 00000000
 0000000
 000000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000

Curse of dimensionality

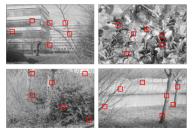


Manifold Hypothesis

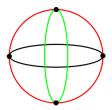
Data density concentrates towards low dimension manifolds

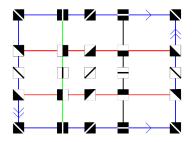


Manifold Hypothesis – TDA (Topological Data Analysis)

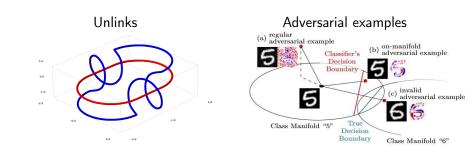


(source: [Lee, Pederson, Mumford 03])

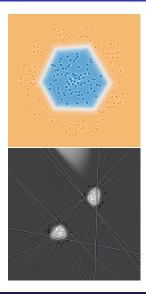


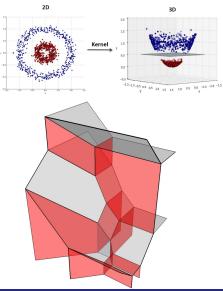


Manifold Hypothesis – Neural Networks

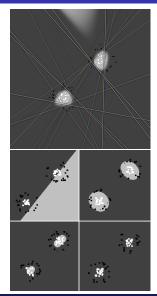


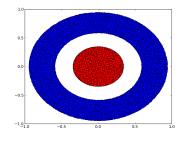
Decision Boundaries

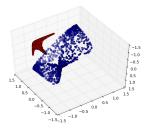




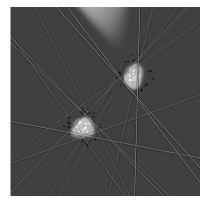
Decision Boundaries - SVM, Kernel trick - Implicit spaces

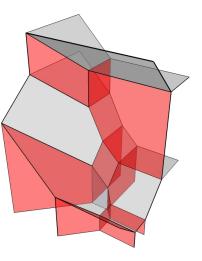






Decision Boundaries – Universal approximation theorems





Tropical Decision Boundaries

(ReLU) Neural Networks are, in some sense, tropical objects !

Proposition (Zhang-Naitzat-L 2018)

Let $\nu : \mathbb{R}^d \to \mathbb{R}$ be an L-layer neural network. Write $\nu = f \oslash g$ then

- A decision boundary B = {x ∈ ℝ^d : ν(x) = c} divides ℝ^d into at most lin(f) connected regions above c and at most lin(g) connected regions below c;
- (ii) The decision boundary is contained in the tropical hypersurface of the tropical polynomial (c ⊙ g(x)) ⊕ f(x), i.e.,

$$\mathcal{B} \subseteq \mathcal{T}((c \odot g) \oplus f).$$

 $(a) H_{\frac{1}{2},\frac{1}{2}} \circ N_{t_1}$ $(b) H_{\frac{1}{2},\frac{1}{2}} \circ T_{2t_1}(u_1, b_2, b_3, b_4)$ $(c) H_{\frac{1}{2},\frac{1}{2},\frac{1}{2}} \circ \gamma_{2t_2}(u_1, b_2, b_3, b_4)$

COROLLARY (RAGHU ET AL. 2017, ZHANG–NAITZAT–L 2018) Assume $n_i \geq d, i = 1, \ldots, L-1$ and $n_L = 1$. The number of linear regions of an L-layer ReLU neural network does not exceed

$$\prod_{i=1}^{L-1}\sum_{j=0}^{d} \binom{n_i}{j} \sim \mathcal{O}(n^{d(L-1)}) \text{ when } n_1 = \dots = n_{L-1} = n.$$

Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion
	00000000				

Tropical geometry

 Geometrical Data Science
 Tropical geometry
 Safe Neural Networks
 Abstract Interpretation
 Our pipeline
 Conclusion

 000000000
 0000000
 000000
 00000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 000000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 00000000000000000000000
 000000000000

Tropical Geometry

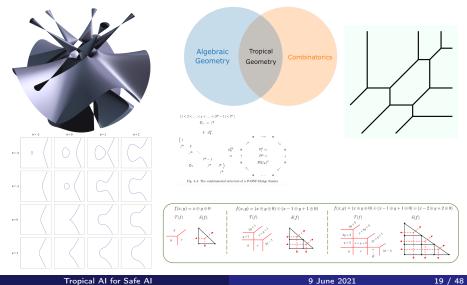
The tropical semiring

 $(\mathbb{R}_{\mathsf{max}},\oplus,\otimes)$

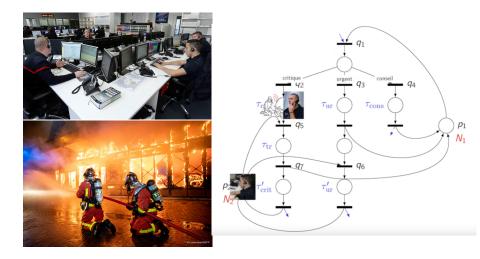
$$\mathbb{R}_{\max} := \mathbb{R} \cup \{-\infty\}$$
$$x \oplus y := \max(x, y)$$
$$x \otimes y := x + y$$
$$\mathbb{1} := 0$$
$$\mathbb{0} := -\infty$$

Operations using only + and max are linear in the tropical world. *ReLU layers are linear in the tropical world* !

A subject this is rich for pure mathematicians...

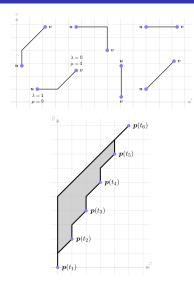


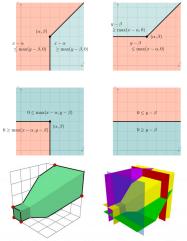
...and has many applications



Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion
	00000000				

Tropical convex geometry

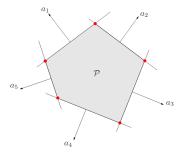


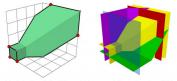


A tropical polytope (left) and the associated arrangement of tropical hyperplanes (right). Source: X. Allamigeon, P. Benchinzd, S. Gaubert, and M. Josvig. Tropicalizing the Simplex Algorithm SIAM J. Discrete Math., 20(2), 751–763.

Tropical Convex Polyhedra – Double Representation

Double representation for classical and tropical polyhedra





A tropical polytope (left) and the associated arrangement of tropical hyperplanes (right). Source X. Allanigeon, P. Benchinol, S. Gaubert, and M. Joswig, Tropicalizing the Simplex Algorithm SIAM J. Discrete Math., 20(2), 731–765.

Conversion is expensive !

Tropical Convex Polyhedra – Double Representation

• External description with constraints

$$\left\{X\in (\mathbb{R}_{\max})^d \, \middle| \, AX \leq BX \text{ in the tropical sense}
ight\}$$

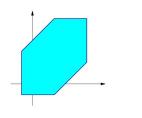
• Internal description with generators

$$co(P) \oplus cone(R), \text{ where}$$

$$co(P) = \Big\{ \bigoplus_{i} \lambda_{i} \odot p_{i} \ \Big| \ \lambda_{i} \in \mathbb{R}_{\max}, \ p_{i} \in P, \ \bigoplus_{i} \lambda_{i} = 0 \Big\},$$

$$cone(R) = \Big\{ \bigoplus_{i} \lambda_{i} \odot p_{i} \ \Big| \ \lambda_{i} \in \mathbb{R}_{\max}, \ p_{i} \in P \Big\}.$$

An open problem : Classical Zones and Tropical Polyhedra



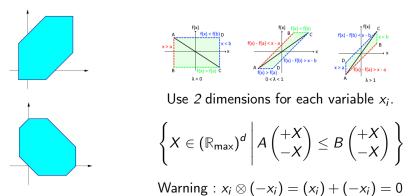


- Conversion Zone \rightarrow TropPoly
 - Immediate for constraint representation
 - Can be done cheaply for internal representation $(n + 1 \text{ extreme points}, O(n^2))$
- TropPoly \rightarrow Zone
 - We can compute a tight overapproximation $(O(n^3))$.
 - TropPoly are unions of Zones.
 - Which unions of zones are tropical polyhedra?

MinMaxPoly : into higher-order geometry

Enrich with negative slopes.

Convex geometry is with polynomial of degree 1. Add degree -1.



is non-linear in the tropical world.

Safe Neural Networks

Verification of Neural Networks

- $\mathrm{NN}:\mathbb{R}^n\to\mathbb{R}^m$ Fully connected ReLU network
- Φ a linear property between input and output.
- Do we have $\forall x \Phi(x, NN(x))$, i.e.

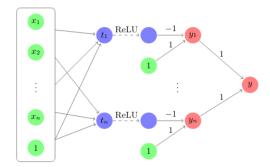
 $NN \models \Phi$?

- Decidable, but NP-hard.
- Other kinds of properties : local robustness, fairness, ...

Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion
		00000			

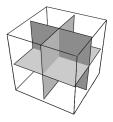
NP-hardness

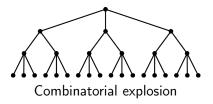
Reduction to 3-SAT by Reluplex authors (Guy Katz et al., 2017)



Some techniques

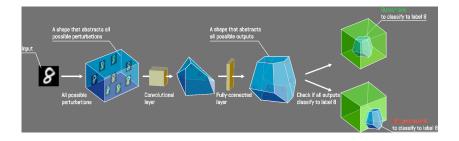
- First methods : Linear Programming + Branch-and-Bound MILP, SMT, ...
- A recent problem ! Reluplex (2017) can deal with 20 neurons, using an extended simplex algorithm, encoded in SMT.
- Other lines of research : (extended ?) polyhedra, abstract interpretation...





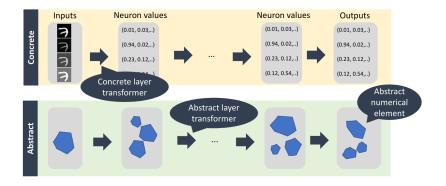
Geometric methods : AI²

Abstract Interpretation for Artificial Intelligence [SafeAI, ETHZürich, Martin Vechez et al., 2018].



- Local protection against adversarial examples.
- Cubes? Zonotopes? Polyhedra?

Geometric methods : Al²

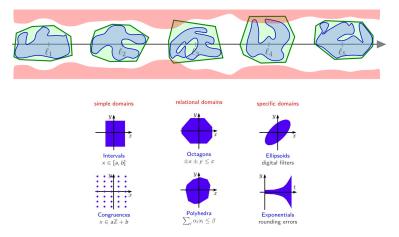


- Precision/Complexity trade-off.
- ReLU layers create trouble.

Abstract Interpretation

Abstract Interpretation

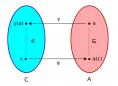
A general theory of sound approximations for program semantics.



Abstract domains

Abstract Interpretation

A general theory of sound approximations for program semantics.



Galois Connections (Adjunctions)

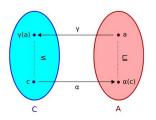
Cousot-Cousot

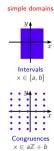
 (S_0) $S_i^{\sharp} \in \mathcal{D}^{\sharp}$ $S_i \in \mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\{I, X\} \to \mathbb{Z})$ assume X in [0,1000]; $S_0^{\sharp} = \top^{\sharp}$ (S_1) $\mathcal{S}_0 = \{ (i, x) \mid i, x \in \mathbb{Z} \}$ I := 0: $S_1^{\sharp} = [X \in [0, 1000]]^{\sharp}(S_0^{\sharp})$ $S_1 = [X \in [0, 1000]] (S_0)$ (S2) $\mathcal{S}_{2}^{\sharp} = \llbracket I \leftarrow 0 \rrbracket^{\sharp} (\mathcal{S}_{1}^{\sharp})$ $\mathcal{S}_{3}^{\sharp} = \mathcal{S}_{2}^{\sharp} \cup^{\sharp} \mathcal{S}_{5}^{\sharp}$ $S_2 = [I \leftarrow 0] (S_1)$ while (S_3) I < X do $S_3 = S_2 \cup S_5$ (S_4) $S_4 = [[I < X]](S_3)$ $\mathcal{S}_{4}^{\sharp} = \llbracket \tilde{I} < X \rrbracket^{\sharp} (\mathcal{S}_{3}^{\sharp})$ I := I + 2: $\mathcal{S}_5 = \llbracket I \leftarrow I + 2 \rrbracket (\mathcal{S}_4)$ $S_{\mathbf{r}}^{\sharp} = \llbracket I \leftarrow I + 2 \rrbracket^{\sharp} (S_{\mathbf{r}}^{\sharp})$ (S_5) $S_6 = [I > X] (S_3)$ $\mathcal{S}_{\epsilon}^{\sharp} = \llbracket I > X \rrbracket^{\sharp} (\mathcal{S}_{2}^{\sharp})$ (S_6) concrete semantics abstract semantics program

Verification, compiler optimization, ...

Examples of Abstract Domains

domain	invariants	memory cost	time cost (per operation)	
intervals	$V \in [\ell,h]$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	
linear equalities	$\sum_i \alpha_i V_i = \beta_i$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
zones	$V_i - V_j \leq c$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
polyhedra	$\sum_i \alpha_i V_i \ge \beta_i$	unbounded, exponential in practice		



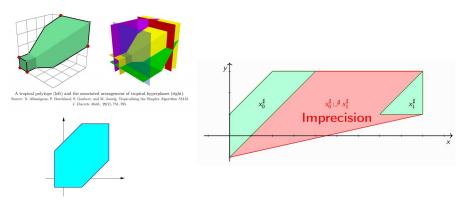


relational domains

 $\frac{\text{Octagons}}{\pm x \pm y \le c}$

Tropical Abstract Domains

Much work done in Xavier Allamigeon's thesis, for memory models.



Non-disjunctive non-convex abstract domains? Back to this zone question...

Our pipeline

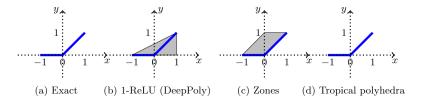
Our problem

 $\mathrm{NN}: \mathbb{R}^n \rightarrow \mathbb{R}^m$ Fully connected ReLU network

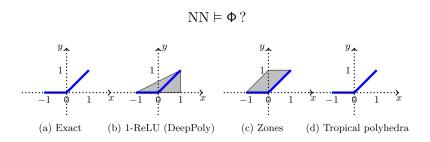
- Φ a linear property between input and output.
- Do we have $\forall x \Phi(x, NN(x))$, i.e.

 $NN \models \Phi$?

Éric Goubault, Sylvie Putot, Sébastien Palumby, Sriram Sankaranarayanan, Xavier Allamigeon, ...



Our problem



We will do abstract interpretation, and work the families T of the tropical polyhedra, the extension T_{\pm} , hypercubes K, zones Z, and octagons Oct.

Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion
				000000000	

Disclaimer

- New ideas to be explored
- Complexity yet unsatisfactory : an exponential operation hidden between cubical ones

Geometrical Data Science	Tropical geometry	Safe Neural Networks	Abstract Interpretation	Our pipeline	Conclusion
				000000000	

Abstract interpretation in $T_{(\pm)}$.

We need to do the following operations on tropical polyhedra.

• ReLU layers. ReLU : $T \rightarrow T$

• Linear layers. $L: T \rightarrow T$.

• Verification of linear properties. $\Phi \in (\mathbb{R}^n)^*$, $t \in T_{(\pm)}$. $t \models \Phi$?

Abstract interpretation in $T_{(\pm)}$.

We need to do the following operations on tropical polyhedra.

• ReLU layers. ReLU : $T \rightarrow T$. Exact !

$$T \xrightarrow{\mathbb{1} \oplus \cdot} T$$

• Linear layers. $L: T \rightarrow T$.

• Verification of linear properties. $\Phi \in (\mathbb{R}^n)^*$, $t \in T_{(\pm)}$. $t \models \Phi$?

Abstract interpretation in $T_{(\pm)}$.

We need to do the following operations on tropical polyhedra.

• ReLU layers. ReLU : $T \rightarrow T$. Exact !

$$T \xrightarrow{\mathbb{1} \oplus \cdot} T$$

• Linear layers. $L: T \rightarrow T$.

• Verification of linear properties. $\Phi \in (\mathbb{R}^n)^*$, $t \in T_{(\pm)}$. $t \models \Phi$?

$$T_{\pm} \rightarrow Z_{\pm} \rightarrow \text{Oct} \Rightarrow \text{LP}$$

or MILP, Tropical Fourier-Motzkin, ... (but we don't earn much)

Abstract interpretation in $T_{(\pm)}$.

We need to do the following operations on tropical polyhedra.

• ReLU layers. ReLU : $T \rightarrow T$. Exact !

$$T \xrightarrow{\mathbb{1} \oplus \cdot} T$$

• Linear layers. $L: T \rightarrow T$.

 $T \to K \to Z \to T$

• Verification of linear properties. $\Phi \in (\mathbb{R}^n)^*$, $t \in T_{(\pm)}$. $t \vDash \Phi$?

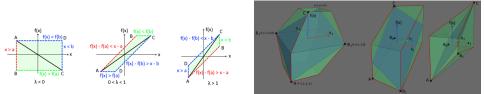
$$T_{\pm} \rightarrow Z_{\pm} \rightarrow \text{Oct} \Rightarrow \text{LP}$$

Abstraction of the linear layer

$$L: x \mapsto \left(\sum \lambda_{ij} x_i\right)_j$$

• Linear layers. $L: T \rightarrow T$.

$$T \to K \to Z \to T$$

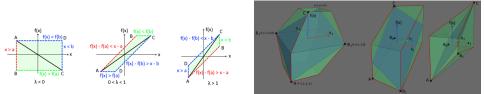


Abstraction of the linear layer (T_{\pm})

$$L: x \mapsto \left(\sum \lambda_{ij} x_i\right)_j$$

• Linear layers. $L: T_{\pm} \rightarrow T_{\pm}$.

$$T_{\pm} \rightarrow K \rightarrow \text{Oct} \rightarrow T_{\pm}$$

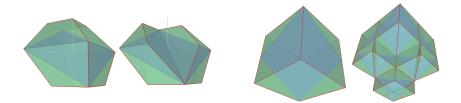


Abstraction of the linear layer (Subdivisions)

$$L: x \mapsto \left(\sum \lambda_{ij} x_i\right)_j$$

• Linear layers. $L: T \rightarrow T$.

 $T \rightarrow K \rightarrow Z \rightarrow T$



Complexity and bottlenecks

- "Mostly" $O(n^3)$
- The double representation problem. Conversion is costly !

	External	Internal	
	representation	representation	
	(constraints)	(generators)	
ReLU layer	Easy	Trivial	
Linear layer	OK	OK	
Hypercube approx.	?	Trivial	
Subdivisions	OK	OK	
Multi-layer	ОК	?	
(Intersection)	UN		
$NN \models \Phi$?	?	OK, LP	

Conclusion

Conclusion

- Conclusion on our pipeline
- Geometrical methods in Machine Learning
- Next steps
 - Full tropical abstraction, without cubes.
 - Zonotopes/cubes relation, tightest zonotope around octagon.
 - T, T_{\pm} ... Go to higher degrees. Tropical Gröbner bases.
- Open problems
 - Double description problem.

Can we avoid double description in our pipeline ? More generally, can we improve the conversion algorithm, maybe for subfamilies of problems ?

• Disjunction problem.

Which union of zones are tropical polyhedra?

Thank you!

• Double description problem.

Can we avoid double description in our pipeline? Can the conversion algorithm be improved?

• Disjunction problem.

Which union of zones are tropical polyhedra?