	Int	troduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000 000 000 000 000 000 000	00	0000	000	00	00000	0000000	000

Model Checking Reading Group Qualitative properties of Markov Chains (10.1.2.)

Louis Rustenholz

30 July 2021

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	00	00000	0000000	000

Introduction

Introduction 0●000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion
Where a	re we ?				

Chapter 10: Model checking of Probabilistic Systems

- 10.1. Markov Chains
 - Markov Chains. Examples.

$$M = (S, \mathsf{P}, \iota_{\text{init}}, AP)$$

• Measure theory, probability spaces, cylinder sets.

 $\operatorname{Cyl}(\hat{\pi}) = \{\pi \in \operatorname{Paths}(\mathcal{M}) \mid \hat{\pi} \in \operatorname{pref}(\pi)\}$

Introduction	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion
Where a	re we ?				

Chapter 10: Model checking of probabilistic systems

- 10.1.1. Reachability probabilities
 - Reachability, Constrained Reachability (Until), Bounded Until.

 $\Pr(s \models \Diamond B), \Pr(s \models C \cup B), \Pr(s \models C \cup {}^{\leq n}B)$

- Measurability. Computation by infinite sums.
- Linear systems and least fixed-point characterization.

$$x = Ax + b$$

• Unique fixed-point theorem, with a good partition.

$$S = S_{=0} \sqcup S_? \sqcup S_{=1}.$$

• Iterations of transition matrix P.

Introduction 000●0	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion
This wee	ek				

Chapter 10: Model checking of probabilistic systems

- 10.1.2. Qualitative properties.
 - Checking whether $Pr(s \vDash \varphi) = 0$ or 1.
 - Limit behaviour of MCs.
 - Graph algorithms, BSCC.
 - Linear time algorithms for qualitative properties.
 - Polynomial time algorithms for quantitative properties.
 - Build on reachability probabilities computed last week.
 - Prepare the theory for model-checking of general formulas in the following weeks.

Introduction 0000●	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion
Followin	g weeks				

Chapter 10: Model checking of probabilistic systems

10.2. PCTL

- A branching time logic with probabilities. Boolean truth values.
- Measurability.
- PCTL model-checking.
- Comparison between qualitative fragment of PCTL and CTL.

10.3. LTL

• Probabilistic truth values of classical LTL formulas.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	00	00000	0000000	000

Qualitative properties

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications 0000000	Conclusion

Qualitative properties

- We want efficient model-checking for *almost sure* events.
- This can be done in *finite* MCs, using graph algorithms.

Introduction 00000	Qualitative properties 00●	Fairness of randomness	BSCC 00000	Applications	Conclusion

Examples of properties

In this subsection, measurability of events is checked by hand. Tools: increasing/decreasing sequences of events, sums of null sets.

• Reachability, Until, Bounded Until.

 $\Diamond B, C \cup B, C \cup {}^{\leq n}B$

• Repeated reachability. Can this happen infinitely many times ?

$\Box \Diamond B$

• Persistence. Is this a constant at infinity ?

 $\Diamond \Box B$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	•0	00000	0000000	000

Fairness of randomness

Introduction 00000	Qualitative properties	Fairness of randomness ○●	BSCC 00000	Applications	Conclusion

Limit behaviour of MCs (1)

Theorem (Fairness)

For any MC \mathcal{M} , $s, t \in S$,

$$\mathsf{Pr}^{\mathcal{M}}(s\vDash \Box \Diamond t) = \mathsf{Pr}^{\mathcal{M}}_{s}\Big(\bigwedge_{\hat{\pi}\in \mathsf{Paths}_{fin}(t)} \Box \Diamond \hat{\pi}\Big).$$

"If t happens infinitely often, anything *finite* that *may* happen after t *does* happen infinitely often."

Proof.

Usual fact in probability theory. Prove it with monotonous limits and countable unions of null sets.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
		00			

Limit behaviour of MCs (1)

Theorem (Fairness)

For any MC \mathcal{M} , $s, t \in S$,

$$\mathsf{Pr}^{\mathcal{M}}(s \vDash \Box \Diamond t) = \mathsf{Pr}^{\mathcal{M}}_{s}\Big(\bigwedge_{\hat{\pi} \in \mathsf{Paths}_{fin}(t)} \Box \Diamond \hat{\pi}\Big).$$

"If t happens infinitely often, anything *finite* that *may* happen after t *does* happen infinitely often."

Corollary

$$Pr\left(s \vDash \bigwedge_{t \in S} \bigwedge_{u \in Post^*(t)} (\Box \Diamond t \to \Box \Diamond u)\right) = 1.$$

NB: in a *finite* Markov Chain, $Pr(s \models \bigvee_{t \in S} \Box \Diamond t) = 1$!

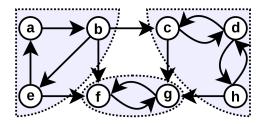
Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000			00000		

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 0●000	Applications	Conclusion 000

Graph notations for MCs

Consider $\mathcal{M} = (S, \mathsf{P}, \iota_{\text{init}}, AP)$ a MC.

- Underlying digraph (forget probabilities). $1_{>0}: [0,1] \rightarrow \{\bot,\top\}.$
- Strongly connected subset. $T \subset S$, $\forall t \in T$, $T \subset Post^*(t)$.
- Strongly connected *component* (SCC) if it is maximal.
- Bottom strongly connected component (BSCC), if we stay there almost surely, i.e. ∀t ∈ T, P(t, T) = 1.



Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00●00	Applications	Conclusion

Limit behaviour of MCs (2)

Theorem

```
For any finite MC \mathcal{M} and s \in \mathcal{M},
```

$$\mathsf{Pr}^{\mathcal{M}}_{\mathsf{s}}\{\pi \in \mathsf{Paths}(\mathsf{s}) \,|\, \mathrm{inf}(\pi) \in \mathsf{BSCC}(\mathcal{M})\} = 1.$$

Proof.

Corollary of fairness theorem.

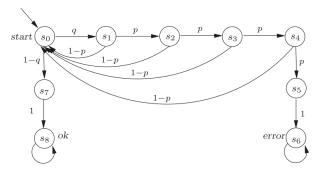
"Almost surely, any run ends up in a BSCC and visits all of its states infinitely often."

- BSCC decomposition can be computed efficiently.
- This allows for fast verification with graph analysis.

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 000●0	Applications	Conclusion

Examples of BSCC decomposition

Zeroconf protocol



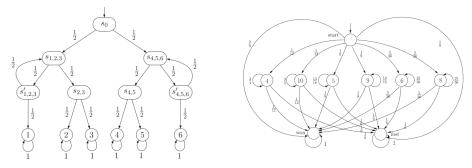
$BSCC(M) = \{\{s_6\}, \{s_8\}\}$

An operator almost never asks infinitely many times for a new address.

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 000●0	Applications 0000000	Conclusion

Examples of BSCC decomposition

Similarly, absorbing states are reached almost surely for Knuth and Yao's die and in craps game.

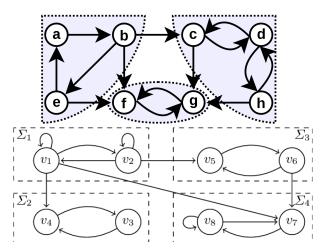


Notice that there are SCC which are not BSCC !

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 000●0	Applications	Conclusion 000

Examples of BSCC decomposition

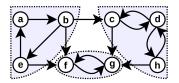
Of course, BSCCs may be larger than single absorbing states.



Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 0000●	Applications	Conclusion

Computing (B)SCC decompositions

Computing a decomposition in SCCs can be done in $O(|\mathcal{M}|)$, with two DFS, one in the graph *G* and one in G^{op} (Kosaraju's algorithm). Eliminating SCCs that are not BSCCs is also easy.



Many other algorithms exist. Optimizing this (optimizing the constant, for parallelism, ...) is a vast subject. (Note that $|\mathcal{M}| = E + V$.)

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	00		000000	

Applications

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications 0●00000	Conclusion

Application: Almost Sure Reachability

Theorem

Let M be a finite MC with state space S, $s \in S$ and $B \subset S$ a set of absorbing states.

$$Pr(s \vDash \Diamond B) = 1 \iff s \in S \setminus Pre^*(S \setminus Pre^*(B)).$$

Proof.

 \Rightarrow is easy. \Leftarrow comes from looking at BSCCs.

$$\{s \in S \mid \Pr(s \vDash \Diamond B) = 1\}$$

can thus be computed in $O(|\mathcal{M}|)$ in the following way.

- Turn \mathcal{M} into a new \mathcal{M}_B where all $s \in B$ are absorbing.
- Do two backward searches in the underlying digraph of \mathcal{M}_B .

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion

Application: Qualitative Constrained Reachability

Let \mathcal{M} be a finite MC with state space S, B, $C \subset S$. The sets

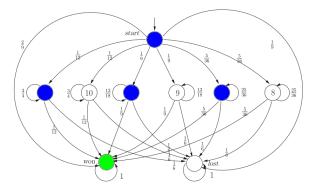
$$S_{=0} = \{ s \in S \mid Pr(s \vDash C \cup B) = 0 \}, \ S_{=1} = \{ s \in S \mid Pr(s \vDash C \cup B) = 1 \}$$

can be computed in $O(|\mathcal{M}|)$.

- States almost never reached are (really) never reached.
 Compute (the complement of) S₌₀ by a backward analysis starting from B-states.
- For $S_{=1}$, turn \mathcal{M} into a new \mathcal{M}' where all $s \in B \cup S \setminus (C \cup B)$ are absorbing, and compute almost sure reachability.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	00	00000	000000	000

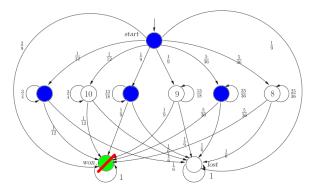
Consider the case of craps game, $B = {\text{won}}$, $C = {\text{start}, 4, 5, 6}$.



For $(Pr(s \models C \cup B) = 0)_s$, backward analysis in the original graph. For $(Pr(s \models C \cup B) = 1)_s$, double backward analysis in a modified graph.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

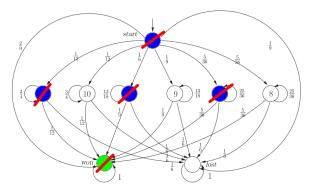
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



$$S_{=0} = S \setminus Sat(\exists (C \cup B))$$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

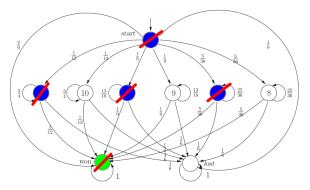
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



$$S_{=0} = S \setminus Sat(\exists (C \cup B))$$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

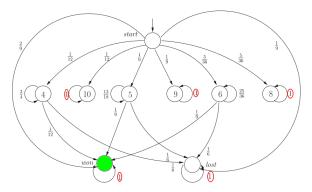
Craps game, $B = \{won\}, C = \{start, 4, 5, 6\}.$



 $S_{=0} = S \setminus Sat(\exists (C \cup B))$ $= \{ lost, 8, 9, 10 \}$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

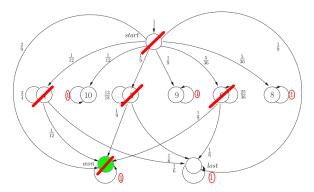
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



$$S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

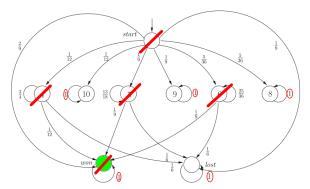
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



$$S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

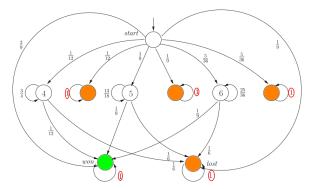
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



 $S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$ = $S \setminus Pre^*\{\text{lost}, 8, 9, 10\}$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

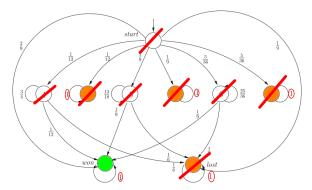
Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



 $S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$ = $S \setminus Pre^*\{\text{lost}, 8, 9, 10\}$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

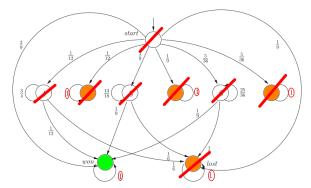
Craps game, $B = \{ won \}$, $C = \{ start, 4, 5, 6 \}$.



 $S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$ = $S \setminus Pre^*\{\text{lost}, 8, 9, 10\}$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				0000000	

Craps game, $B = \{\text{won}\}, C = \{\text{start}, 4, 5, 6\}.$



 $S_{=1} = S \setminus Pre^*(S \setminus Pre^*(B))$ = $S \setminus Pre^*\{\text{lost}, 8, 9, 10\} = \{\text{won}\}$

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				00000000	

Application: Qualitative Repeated Reachability

Theorem

Let \mathcal{M} be a finite MC, $s \in S$, $B \subset S$.

 $Pr(s \models \Box \Diamond B) = 1 \iff T \cap B \neq \emptyset$ for each BSCC T reachable from s.

Proof.

Consequence of our BSCC theorem.

 $\{s \in S \mid \Pr(s \vDash \Box \Diamond B) = 1\}$

can thus be computed in $O(|\mathcal{M}|)$ in the following way.

- Compute BSCC(M) in O(|M|) (while marking all T such that T ∩ B ≠ Ø).
- Compute the union U of all $T \in BSCC(\mathcal{M})$ such that $T \cap B \neq \emptyset$.
- Compute $S \setminus Pre^*(S \setminus Pre^*(U))$ by backward analysis.

Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications 00000●0	Conclusion

Application: Quantitative Repeated Reachability

Corollary

Let \mathcal{M} be a finite MC, $s \in S$, $B \subset S$, and U be the union of all $T \in BSCC(\mathcal{M})$ such that $B \cap T \neq \emptyset$.

 $Pr(s \vDash \Box \Diamond B) = Pr(s \vDash \Diamond U)$

$$s \mapsto Pr(s \models \Box \Diamond B)$$

can thus be computed in $O(\operatorname{Pol}(|\mathcal{M}|))$ in the following way.

- Compute $BSCC(\mathcal{M})$ in $O(|\mathcal{M}|)$ (while marking all T such that $T \cap B \neq \emptyset$).
- Compute the union U of $T \in BSCC(\mathcal{M})$ such that $T \cap B \neq \emptyset$.
- Compute $(Pr(s \models U))_s$, e.g. by solving a linear system.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
				000000	

Application: Persistence

Theorem

Let \mathcal{M} be a finite MC, $s \in S$, $B \subset S$, and U be the union of all $T \in BSCC(\mathcal{M})$ such that $B \subset T$.

$$Pr(s \vDash \Box \Diamond B) = 1 \iff Pr(s \vDash \Diamond U) = 1$$
$$Pr(s \vDash \Box \Diamond B) = Pr(s \vDash \Diamond U)$$

This gives a linear time algorithm for qualitative persistence, and a polynomial time algorithm for quantitative persistence.

The same kind of techniques can be used for various other properties.

Introduction	Qualitative properties	Fairness of randomness	BSCC	Applications	Conclusion
00000	000	00	00000	0000000	000

Conclusion

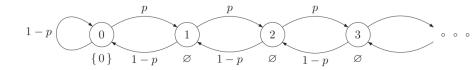
Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion ○●○

Infinite Markov Chains

Conclusion:

For *finite* Markov Chains, *qualitative properties don't* depend on probability transitions !

This is not the case for *infinite* Markov Chains.



Introduction 00000	Qualitative properties	Fairness of randomness	BSCC 00000	Applications	Conclusion ○○●	
Conclusion						

For *finite* Markov Chains, *qualitative properties don't* depend on probability transitions !

- Anything that *may* happen after something that happens infinitely often *does* happens infinitely often.
- Every run finishes in a BSCC.
- $BSCC(\mathcal{M})$ can be computed in $O(|\mathcal{M}|)$.
- Qualitative properties (like reachability, repeated reachability, persistence, ...) can be checked in linear time.
- Quantitative versions can be checked in polynomial time.

More generic solutions will be studied in section 10.2. about PCTL.