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Why Energy?

IT’s share of global carbon emissions has grown from 2.5% to around 5% in the last ten years.

Terminals (use)

20%

Data centers (use)

19%

Networks (use)

16%
Computers (production)

17%

TVs (production)
11%

Smartphones (production)

11%

Others (production)

6%

IT equipment

78%

Cooling

16%

Others

6%

Idle Average Peak
0%

50%

100%

Figure: Energy Usage in IT. By subfield, and case studies on a data center.

Energy consumption of programs is relevant and understudied by carbon audit experts.

Also, potential applications to verification of embedded software or against side-channel
attacks.

Applicable to other resources than energy: time, memory, number of communications, ...
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Why Recurrence Equations?

There are both software and hardware components to such line
of work. In this internship, we focused more on the problem of
control flow analysis than on energy models.

The hard software problem is recursivity.
Use Horn Clauses as Intermediate Representation.

“Systems of recurrence equations may be seen as programs
stripped from information irrelevant to cost analysis”

Here, we don’t really care about exact solutions of equations:
bounds on the solutions are satisfactory.
This is a research opportunity.
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Contents of this talk

1 Background (Ciao/CiaoPP, Logic Programming, Abstract Interpretation)

2 Current pipeline for energy analysis of imperative programs

3 Implementation of classical recurrence solving techniques

4 Proposal of new order-theoretical recurrence solving techniques
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Background
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Ciao / CiaoPP

An extensible logic programming language making full use of analysis/verification/optimisation.
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Logic Programming

Fact, rules and queries.

Programing with Relations: nondeterminism and no fixed input/output status.

Execution ↔ automated proof search. Computation happens by unification.

Using Logic Programs as (Horn Clause) Intermediate Representation of imperative
programs,

the only control structure is function call.

AND-OR trees, sets of substitutions, ...

hor_and_ver(S)

hor_and_ver(S) :- vertical(S), horizontal(S).

vertical(S)

vertical(segment(point(X,Y1),point(X,Y2))) :- .

horizontal(S)

horizontal(segment(point(X1,Y),point(X2,Y))) :- .

σ = {S ← segment(point(2, 3),P)}

{S ← segment(point(2, 3),P)}

{S ← segment(point(2, 3),P)}

{X ← 2,Y1 ← 3,Y2 ← Y2}

{X ← 2,Y1 ← 3,Y2 ← Y2} {X1 ← 2,X2 ← 2,Y ← 3}{X1 ← 2,X2 ← 2,Y ← 3}

{S ← segment(point(2, 3), point(2, 3))}

{S ← segment(point(2, 3), point(2, 3))}

{S ← segment(point(2, 3), point(2, 3))}

{S ← segment(point(2, 3), point(2,Y2))}

vertical (segment(point(X,_),point(X,_))).
horizontal(segment(point(_,Y),point(_,Y))).

hor_and_ver(S) :- vertical(S), horizontal(S).

hor_or_ver(S) :- vertical(S).
hor_or_ver(S) :- horizontal(S).

?- hor_and_ver(segment(point(2,3), P)).
P = point(2, _1658)
P = point(_1364, 3)
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Abstract Interpretation

A general theory of sound abstractions of program semantics, based on order theory
and Galois connections between lattices called concrete and abstract domains.

Figure: Abstract Interpretation was first developed by Patrick and Radhia Cousot in the 70’s.

Observation: program semantics can be viewed as the least fixed point of some
monotone operator.

Usual Syntax Syntax for
modified program

Usual Semantic
e.g. P(Σ∗)

Abstract Semantic
i.e. desired information

S (execute on all inputs)

rewrite

S♯ (execute abstract program)

extract (forget)

Usual Syntax

Usual Semantic
e.g. P(Σ∗)

Abstract Semantic
i.e. desired information

S S♯ (abstract execution)

extract (forget)

Figure: “Execute then Abstract” or “Abstract then Execute”, or even “Execute Abstractly”.
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Pipeline
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Pipeline

C HCIR HCIR(Size) RecEq(Sz + Cost)

Traces(Mem(C),Cost) Trees(Mem(HC))
+ Cost model for builtins

Trees(Mem(HC)
Size )

+ Cost model for builtins

FP + CostP SzP + CostSz,P SzI + CostSz,I

αSz extract

solve≈ αSz

α◦
Sz α◦

I
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Code transformation (1)

Figure: C program (left) translated into ISA level (middle) and HCIR from ISA (right).
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Code transformation (2)

int fact(int n){
if(n <= 0)

return 1;
return n*fact(n-1);

}

⇒ {
Szfact(n) = 1 when n ≤ 0,
Szfact(n) = n × Szfact(n − 1) otherwise.

The recurrence structure of programs appears in the corresponding
equations.

This is a simple case. In general, size measure may introduce abstractions,
and we use both size and cost functions.

When translating imperative loops into recursive programs, ranking
functions may have to be inferred.
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The energy model problem

Need to create models by measurements or simulation.

A simple model might assign a constant consumption to each type of
instruction, or a reasonably tight interval.
More complex models might care about history of previous instructions, e.g.
pairs of instructions, or about value of operands (data-dependent
consumption).

Can be important to deal with “hardware’s runtime policies”, e.g. cache
behaviour. Static analysis techniques exist, but it is hard.

Choosing the right level of granularity is hard.
May have to do compromises depending on the application.
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Implementation
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Adding some classical techniques to the recurrence solver

“Dictionary lookup”

Rewriting
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Adding classical recurrence solving techniques
Second and third order linear recurrence equations with constant coefficients and a few
options for the affine term. Classical method with particular solution + homogeneous
solution using roots of characteristic polynomial.

Required to add complex numbers to CiaoPP (and to its numerical expressions).

Before

After
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Irrelevant variables analysis – An analyse + rewrite pass

Example from cost analysis of a fact program with accumulator.

{
f (n, a) = 1 + f (n − 1, (n − 1)× a) if n > 0,
f (n, a) = 0 if n ≤ 0.

⇓
{
f̃ (n) = 1 + f̃ (n − 1) if n > 0,
f̃ (n) = 0 if n ≤ 0.
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Irrelevant variables analysis – Fixpoint formulation{
f (n, a) = 1 + f (n − 1, (n − 1)× a) if n > 0,
f (n, a) = 0 if n ≤ 0.

In general, we do this by overapproximating the set of relevant indices,
as the lfp of the following operator.

F : P(J1, kK)→ P(J1, kK)
I 7→ I ∪ {i | ni appears in a condition ϕj}

∪
{
i

∣∣∣∣ ni appears in an expression Ψj

via a path going only through f via indices i ′ ∈ I

}

In this example, only n is added, using the boundary conditions:

lfpF = {1}.

Automated Approximate Recurrence Solving 6 September 2022 20 / 32
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Irrelevant variables analysis – Fixpoint formulation (2)

{
f (n1, n2, n3, n4, n5) = 0 if n1 ≤ 0
f (n1, n2, n3, n4, n5) = 1 + f (n1 − n3 − 1, n1 × n2, n2 × n3, n3 × n4, n4 × n5) if n1 > 0.

Again, we overapproximate the set of relevant indices, as the lfp of F .

F : P(J1, kK)→ P(J1, kK)
I 7→ I ∪ {i | ni appears in a condition ϕj}

∪
{
i

∣∣∣∣ ni appears in an expression Ψj

via a path going only through f via indices i ′ ∈ I

}

First, n1 is relevant because of the boundary conditions.
To compute n1, we need n3,

and thus also n2

.
lfpF = {1, 2, 3}, we can rewrite the equation to

{
f̃ (n1, n2, n3) = 0 if n1 ≤ 0
f̃ (n1, n2, n3) = 1 + f̃ (n1 − n3 − 1, n1 × n2, n2 × n3) if n1 > 0.

.
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Irrelevant variables analysis – Before/After
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Irrelevant variables analysis – Before/After

Other analyse + rewrite passes could be implemented,
e.g. using change of variables or usage of inferred ranking functions.
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Order
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Automated Approximate Recurrence Solving

Design a generic, approximate recurrence solver.

Observation: just like program semantics, solutions of recurrence
equations may be seen as (least) fixed points of a well-chosen operator.

{
f (0) = a

f (n) = f (f (n − 1)) + 1, ∀n ∈ N∗ ⇔
S : (N → N) → (N → N)

g 7→
(
n 7→

{
a if n = 0
g(g(n − 1)) + 1 otherwise

)

To make the theory work well, restrict ourselves to monotone
recurrence equations, and use D

∆
= N∞ → N∞, which is a complete

lattice, as the domain of sequences.
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First idea: Abstract interpretation of Recurrence equations
With S : D → D an equation/operator on the concrete domain of
sequences, fsol = lfpS = supα∈Ord S

(α)(⊥).
Use an abstract domain D♯ and abstract operator S ♯, fsol ≤ γ(lfpS ♯).
Using subsets of D (e.g. all affine sequences) as D♯ doesn’t work well,
so we use the power trick and use the domain of sets of abstract bounds.

Definition (Domain of abstract bounds)

Let A be a domain of abstract sequences, e.g.
A = all affine sequences ∼= N∞ × N + {⊤A}, with ϕ : A→ D a concretisation.
We set D♯ ∆

= (P(A),⊇).

Proposition

We have a Galois connection D −−−→←−−−α
γ

D♯, defined by
α : D → D♯

f 7→
{
f ♯ ∈ A

∣∣ f ≤D ϕ(f ♯)
}
,

γ : D♯ → D

U 7→
(
n 7→ min

f ♯∈U
ϕ(f ♯)(n)

)
.

Moreover, for any U, γ ◦ α(U) = ↑U. In particular, α(U) = α( ↑U).
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First idea: Abstract interpretation of Recurrence equations
In the ideal case, for an equation like f (0) = 0, f (n) = f (f (n− 1))+ 1 when n > 0, we could do

D♯ P(D)

⊥ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1} {1n + 0, 02∗}

↑
{

1n + 0,
2n + 0, 0n + 2

}
{1n + 0, 03∗}

↑
{

1n + 0,
3n + 0, 0n + 3

}

↑{1n + 0, ⊤} = ↑{1n + 0}

S◦ϕ on extremal bounds

union of α’s

α◦S◦γ⊑
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First idea: Abstract interpretation of Recurrence equations
In practice, we don’t have direct access to S , γ and α, so we need to design transfer functions.
An abstract semantic J·K♯ : Eqs → (A → P(A)) is defined and extended to Eqs → (P(A) → P(A)).
For example, with affine functions,

JCst cK♯(f ♯) =
{
(0, c)

}
JnK♯(f ♯) =

{
(1, 0)

}
JfK♯(f ♯) =

{
f ♯
}

J♢K♯(⊤A, g
♯) = J♢K♯(f ♯,⊤A) = {⊤A}

for ♢ ∈ {+,×, ◦,−}

J+K♯
(
(a1, b1), (a2, b2)

)
=
{(

a1 + a2, b1 + b2
)}

J×K♯
(
(a1, b1), (a2, b2)

)
=
{(

a1a2∞ + a1b2 + a2b1, b1b2
)}

where we set 0 × ∞ = ∞

J◦K♯
(
(a1, b1), (a2, b2)

)
=
{(

a1a2, a1b2 + b1
)}

J−K♯
(
(a1, b1), (a2, b2)

)
=
{(

a1 − a2, b1 − b2
)}

JMultin cK♯((a, b)) =
{
(ca, b)

}
JDivin cK♯((a, b)) =

{(⌈ a
c

⌉
, b
)}

JPush cK♯(f ♯) =


{
(∞, c)} if f ♯ = ⊤A{
(a, c)

}
if f ♯ = (a, b) and b ≤ a + c{

(a, b − a), (b − c, c)
}

if f ♯ = (a, b) and b > a + c

JPopK♯((a, b)) =

{{
⊤A} if f ♯ = ⊤A{
(a, b + a)

}
if f ♯ = (a, b)

JShift δK♯(f ♯) =


(JPush 0K♯)δ(f ♯) if δ ≥ 0{
⊤A
}

if δ ≤ 0 and f ♯ = ⊤A{
(a, b + |δ|a)

}
if δ ≤ 0 and f ♯ = (a, b)

JSet0 cK♯(f ♯) = JPush cK♯ ◦ JPopK♯(f ♯)

=


{(∞, c)} if f ♯ = ⊤A{
(a, c)

}
if f ♯ = (a, b) and b ≤ c{

(a, b), ((a + b) − c, c)
}

if f ♯ = (a, b) and b > c

n

f (n)

0 1 2 3 4 5
0

1

2

3

4

5

6

1n + 3 (green)
JPush 1K(1n + 3) (frontier)
JPush 1K♯(1n + 3) (blue)
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

By the properties of lattices, for a monotone equation/operator S ,
if f ≥ S(f ) (prefix), then f ≥ lfp S .
Similarly, if f ≤ S(f ) (postfix), then f ≤ gfp S .
In particular, when we can prove that there is only one solution to f = S(f ),
we get fsol ≤ f for any prefixpoint and f ≤ fsol for any postfixpoint.
This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may
arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

S : f 7→ n 7→


0 if n = 0
1 if n = 1
max

1≤k≤n−1
f (k) + f (n − k) + n otherwise

g : n 7→ n2 ?

fsol(n) ≤ n2.

g : n 7→ 1
2n

2 ?

(Sg)(0) ≥ g(0), (Sg)(1) ≥ g(1) and
(Sg)(n) = 1

2 (1
2 + (n − 1)2) + n = 1

2n
2 + 1 ≥ g(n), thus g ≤ Sg , thus

1
2n

2 ≤ fsol(n).

Automated Approximate Recurrence Solving 6 September 2022 28 / 32



Introduction Background Pipeline Implementation Order Conclusion

Second idea: Pre-/Post-fixpoints as easily checkable bounds

By the properties of lattices, for a monotone equation/operator S ,
if f ≥ S(f ) (prefix), then f ≥ lfp S .
Similarly, if f ≤ S(f ) (postfix), then f ≤ gfp S .
In particular, when we can prove that there is only one solution to f = S(f ),
we get fsol ≤ f for any prefixpoint and f ≤ fsol for any postfixpoint.
This gives a new simple proof method for complexity analysis equations.

Example
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

By the properties of lattices, if we can prove that there is only one solution
to f = S(f ), we get fsol ≤ f for any prefixpoint and f ≤ fsol for any
postfixpoint.

This gives a new simple proof method for complexity analysis equations.

Because it is simple, it is amenable to automation.
Use some sort of divide-and-conquer heuristics ?
Recent papers have improved dichotomy to deal with the lattice (J1, nK)d in
logarithmic time, but their technique to deal with the case f ̸≶ Sf isn’t easy to
translate to general lattices.

Use some some of guess-and-check method ?
A current technique (Lasso + SMT) tries to fit the exact solution using
common complexity functions, and then check equality.
Guessing bounds and then checking inequality seems more likely to suceed.
Note that automatic check of fsol ≤ g is much harder than fsol = g given only
the equation, and our method provides a way to do so in many cases.
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Conclusion
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Summary and Next Steps
Contributions

Implementation – Classical Recurrence Solver
Small additions to the “table lookup” side of the solver,
New analyse + rewrite pass for irrelevant variable analysis,
Various small bugfixes.

Theory – New order-theoretical point of view
Abstract iteration, with a few domains,
Pre-/Post-fixpoints as “easily checkable bounds”.

Possible Next Steps

Implementation of algorithms, with their extensions.

Design of new domains, e.g. using results of experiments with SMT solvers.

Exploration of the new abstract point of views on “ideal size measures” as optimal abstractions, on
HCIRSz ↔ RecEq for rewritings, etc.

Finish benchmark work on “the recurrence structure of real programs”.

Improvement in translation of imperative programs to equations (inference of ranking functions,
output/output size relations, preservation of type properties, ...).

Usage of analysis for optimisation.

Improvement in energy models (VHDL, low-level runtime policies, etc.).

Go further in contacts with industry/associations.

At some point, include our cost analysis as a plugin of other tools? (Clang, Frama-C, ...).
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Thank you !
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