Introduction	Background	Pipeline 00000	Implementation	Order 0000000	Conclusion

Automated Approximate Recurrence Solving applied to Static Analysis of Energy Consumption

Louis Rustenholz, supervised by Manuel Hermenegildo, Pedro López-García and José F. Morales, CLIP Lab, IMDEA Software Institute, Madrid

6 September 2022

Introduction ●0000	Background 0000	Pipeline 00000	Implementation	Order 0000000	Conclusion

Introduction

Introduction	
00000	

Backgroun

Pipelir 00000 mplementation

0**rder** 0000000 Conclusion

Team

IMDEA Software Institute, Madrid

Manuel Hermenegildo

Pedro López-García

José Francisco Morales

IT's share of global carbon emissions has grown from 2.5% to around 5% in the last ten years.

Figure: Energy Usage in IT. By subfield, and case studies on a data center.

• Energy consumption of programs is relevant and understudied by carbon audit experts.

 Also, potential applications to verification of embedded software or against side-channel attacks.

Applicable to other resources than energy: time, memory, number of communications, ...

- There are both software and hardware components to such line of work. In this internship, we focused more on the problem of control flow analysis than on energy models.
- The hard software problem is recursivity.
 Use Horn Clauses as Intermediate Representation.
 "Systems of recurrence equations may be seen as programs stripped from information irrelevant to cost analysis"
- Here, we don't really care about exact solutions of equations: bounds on the solutions are satisfactory. This is a research opportunity.

- Background (Ciao/CiaoPP, Logic Programming, Abstract Interpretation)
- Ourrent pipeline for energy analysis of imperative programs
- Implementation of classical recurrence solving techniques
- Proposal of new order-theoretical recurrence solving techniques

Introduction	Background	Pipeline	Implementation	Order	Conclusion
00000	●000	00000	0000000	0000000	

Background

Introduction 00000	Background 0●00	Pipeline 00000	Implementation	O 1 00	der 000000	Conclusion
Ciao / Ci	aoPP					
An extensible	logic programmir	ig language ma	aking full use of ana	lysis/veri	fication/c	optimisation.
••• • 📄 × 🗔 🖪 🐰 🗈 🖻	📱 app_assrt.pl 1 💽 📇 🧲 🛢 🎯 🛷 🥓 🖸	⊗		or Option Brows	er 🛞	
<pre>1 := module(_, [app/3], [asserti 2 := entry spo(A,B,C) : (1st(A) 4 := pred app(A,B,C) : (1st(X), 5 app((1,YY)). 6 app((1 XS), YS, [X 2S)) := 7 app(XS,YS,ZS). 7 7 8 9 9 9 9 9 9 9 9 9 9 1 9 1 9 1 9 1 9 1</pre>	ons]). , list(8)). list(8)) ⇒ list(C). ©©e⊗ u	tix S: 0 All	Use Saved Menu Configuration (menu_lat Menu Level (menu_level) Action (inter_all) Analysis Domain (assert_ctcheck) Modules to Check (ct_sodular) Analyze Non-Failure (ana_nf) Analyze Non-Failure (ana_nf) Analyze Cost (ana_cot) Analyze Cost (ana_cot)	t_config) : ; (_ana) :	none naive check_assertions manual curr_mod on nf none none det	******
(assertions checked in 2.496 msec.) yes claopp 7- output. (written file /Users/sabel.garcia/gil/clao-dev yes claopp 7- []	Nciaoppidootutorials/tut_examples/app_assrt_e	ierms_shfr_co.pl)	Analysis entry (entry_point) Incremental (incremental) Intermodular (intermod) Report Non-Verified Assrts (ass_not_st Generate Curtificate (gen_certificate) Generate Output (menu_output) 0 Output (menu_output) 1 Davide Generate Output_lang)	at_eval) ks_intervals)	entry off warning off on on source	****
<pre> * 7.7k *Ciao Preprocessor* z= module(_1,[app/3],[assertio</pre>	Ciao Listener utf-8 ns,regtypes,nativeprops]).	181:10 Bottom	Multi-variant Analysis Results (vers Collapse Versions (collapse_ai_vers)	;) :	off on	č
4 3% 3% :: (list(A), list(B) 5 3% 3% ⇒ list(C). 7 :- entry app(A,B,C) 8 : (list(A), list(B) 9 10 :- checked calls app(A,B,C)).	1 :- module(., [nrev/2], 2 3 :- entry nrev/2 : {list, 4	[assentions,fsyntax,mativeprops]), , ground] * var.	File Line Col revf.pl 1 revf.pl 5	Level ID Messi error Error info Veri :- d	age (Checker) ≤ detected. Further preprocessin∮ ied assertion: meck calls nrev(A,B)
<pre>11 : (List(A), List(B) 12 13 :- true success app(A,B,C) 14 : (List(A), List(B) 15 => List(C).</pre>).	6 + (not_fails, is.de 8 nrev() := []. 9 nrev([HL]) := -conc(10	-mnev(L),[H]).	[revf.pl 5	info Veri :- d : error Fals	rist(A). (clappeost) ried assertion: weck success nrev(A,B) list(A) - list(B). (claopp-cost) a assertion:
<pre>17 :- true pred app(A,B,C) 18 : (list(A), list(B), 19 => (list(A), list(B), 28 0 - 635 app_assrt_eterms_shfr_c</pre>	term(C)) list(C)).	11 12 :- pred conc(A,B,C) + (13 14 conc([], L) := L. 15 conc([HIL], K) := [H	<pre>terminates, is_det, steps_o(length(A))). I ~conc(L,K)].</pre>	central 12	:-d ; beca [gen	<pre>reck comp nrev(A,8) list(A) (not_fails, is_det, steps_o(len+ use the comp field is incompatibl+ nric_comp] covered,is_det,mut_exc+ field essertion:</pre>
				revf.pl 12	info Veri :- d :- d :- d	<pre>seck calls conc(A,B,C). (cicopp-c+ fied assertion: seck comp conc(A,B,C) (terminates, is_det, steps_o(le+</pre>

Introduction 00000	Background 00●0	Pipeline 00000	Implementation	Order 0000000	Conclusion

Logic Programming

- Fact, rules and queries.
- Programing with Relations: nondeterminism and no fixed input/output status.
- Execution ↔ automated proof search. Computation happens by unification.
- Using Logic Programs as (Horn Clause) Intermediate Representation of imperative programs,

the only control structure is function call.

• AND-OR trees, sets of substitutions, ...

vertical (segment(point(X,_),point(X,_))). horizontal(segment(point(_Y),point(_Y))). hor_and_ver(\$) :- vertical(\$), horizontal(\$). hor_or_ver(\$) :- vertical(\$). hor_or_ver(\$) :- horizontal(\$). ?- hor_and_ver(segment(point(2,3), P)). P = point(2,_1558) P = point(_1564, 3)

Abstract Interpretation

• A general theory of sound abstractions of program semantics, based on order theory and Galois connections between lattices called *concrete* and *abstract domains*.

Figure: Abstract Interpretation was first developed by Patrick and Radhia Cousot in the 70's.

• Observation: program semantics can be viewed as the *least fixed point* of some monotone operator.

Figure: "Execute then Abstract" or "Abstract then Execute", or even "Execute Abstractly".

Introduction	Background	Pipeline	Implementation	Order	Conclusion
00000	0000	●୦୦୦୦	0000000	0000000	

Introduction 00000	Background	Pipeline o●ooo	Implementation 0000000	Order 0000000	Conclusion

Introduction 00000	Background	Pipeline o●ooo	Implementation 0000000	Order 0000000	Conclusion

Introduction 00000	Background	Pipeline o●ooo	Implementation 0000000	Order 0000000	Conclusion

Introduction 00000	Background	Pipeline o●ooo	Implementation 0000000	Order 0000000	Conclusion

Implementation

Order 0000000 Conclusion

Code transformation (1)

int fact(int n){
 if(n <= 0)
 return 1;
 return n*fact(n-1);
}</pre>

<fact>: 001: entsp 0x2002: stw r0, sp[0x1] 003: ldw r1, sp[0x1] 004: ldc r0, 0x0 005: lss r0, r1 006: bf <008> 007: bu <010> 010: ldw r0, sp[0x1] 011: sub r0, r0, 0x1 012: bl <fact> 013: ldw r1, sp[0x1] 014: mul r0, r1, r0 015: retsp 008: mkmsk r0, 0x1 009: retsp 0x2

fact(R0, R0_3) :entsp(0x2), stw(R0, Sp0x1), ldw(R1, Sp0x1), ldc(R0_1, 0x0), lss(R0 2, R0 1, R1). bf(R0_2, 0x8) , fact_aux(R0_2, Sp0x1, R0_3, R1_1). fact_aux(1, Sp0x1, R0_4, R1) :bu(OxOA), ldw(R0_1, Sp0x1), sub(R0_2, R0_1, 0x1), bl(fact). fact(R0_2, R0_3), 1dw(R1, Sp0x1). mul(RO_4, R1, RO_3), retsp(0x2). fact_aux(0, Sp0x1, R0, R1) :mkmsk(RO, 0x1),

Figure: C program (left) translated into ISA level (middle) and HCIR from ISA (right).

Code transformation (2)

int fact(int n){
if(n <= 0)
return 1;
return n*fact(n-1);
}

$$Sz_{fact}(n) = 1 when n \le 0,$$

$$Sz_{fact}(n) = n \times Sz_{fact}(n-1) otherwise.$$

- The recurrence structure of programs appears in the corresponding equations.
- This is a simple case. In general, size measure may introduce abstractions, and we use both size and cost functions.
- When translating imperative loops into recursive programs, ranking functions may have to be inferred.

The energy model problem

- Need to create models by measurements or simulation.
- A simple model might assign a *constant consumption* to *each type of instruction*, or a reasonably tight *interval*.
- More complex models might care about *history* of previous instructions, e.g. *pairs of instructions*, or about value of operands (*data-dependent consumption*).

- Can be important to deal with *"hardware's runtime policies"*, e.g. *cache behaviour*. Static analysis techniques exist, but it is hard.
- Choosing the right level of granularity is hard. May have to do compromises depending on the application.

Introduction 00000	Background	Pipeline 00000	Implementation •000000	Order 0000000	Conclusion

Implementation

Introduction	Background	Pipeline	Implementation	Order	Conclusion
00000	0000	00000	○●○○○○○	0000000	

- Adding some classical techniques to the recurrence solver
 - "Dictionary lookup"
 - Rewriting

Adding classical recurrence solving techniques

- Second and third order linear recurrence equations with constant coefficients and a few
 options for the affine term. Classical method with particular solution + homogeneous
 solution using roots of characteristic polynomial.
- Required to add complex numbers to CiaoPP (and to its numerical expressions).

File Drift Ontions Beffers Tools Clarofes ClanDhe ClanDP IPrior ClanDets Clanifelio

Example from cost analysis of a fact program with accumulator.

$$\begin{cases} f(n, a) = 1 + f(n - 1, (n - 1) \times a) & \text{if } n > 0, \\ f(n, a) = 0 & \text{if } n \le 0. \end{cases}$$

Example from cost analysis of a fact program with accumulator.

Introduction 00000	Background 0000	Pipeline 00000	Implementation	Order 0000000	Conclusion

Irrelevant variables analysis - Fixpoint formulation

$$\begin{cases} f(n,a) = 1 + f(n-1, (n-1) \times a) & \text{if } n > 0, \\ f(n,a) = 0 & \text{if } n \le 0. \end{cases}$$

 $\bullet\,$ In general, we do this by overapproximating the set of relevant indices, as the ${\rm lfp}$ of the following operator.

$$\begin{split} F : \mathcal{P}(\llbracket 1, k \rrbracket) &\to \mathcal{P}(\llbracket 1, k \rrbracket) \\ I &\mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\} \\ & \cup \left\{ i \mid \begin{array}{c} n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \end{array} \right\} \end{split}$$

Introduction 00000	Background	Pipeline 00000	Implementation 0000●00	Order 0000000	Conclusion

Irrelevant variables analysis – Fixpoint formulation

$$\begin{cases} f(n,a) = 1 + f(n-1, (n-1) \times a) & \text{if } n > 0, \\ f(n,a) = 0 & \text{if } n \le 0. \end{cases}$$

 $\bullet\,$ In general, we do this by overapproximating the set of relevant indices, as the ${\rm lfp}$ of the following operator.

$$\begin{split} F : \mathcal{P}(\llbracket 1, k \rrbracket) &\to \mathcal{P}(\llbracket 1, k \rrbracket) \\ I &\mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\} \\ & \cup \left\{i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \right\} \end{split}$$

• In this example, only *n* is added, using the boundary conditions:

lfp
$$F = \{1\}.$$

$$\begin{cases} f(n_1, n_2, n_3, n_4, n_5) = 0 & \text{if } n_1 \leq 0\\ f(n_1, n_2, n_3, n_4, n_5) = 1 + f(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3, n_3 \times n_4, n_4 \times n_5) & \text{if } n_1 > 0. \end{cases}$$

$$\begin{split} F : \mathcal{P}(\llbracket 1, k \rrbracket) &\to \mathcal{P}(\llbracket 1, k \rrbracket) \\ I &\mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\} \\ & \cup \left\{ i \mid n_i \text{ appears in an expression } \Psi_j \\ & \cup \left\{ i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{ via a path going only through } f \text{ via indices } i' \in I \end{array} \right\} \end{split}$$

$$\begin{cases} f(n_1, n_2, n_3, n_4, n_5) = 0 & \text{if } n_1 \le 0\\ f(n_1, n_2, n_3, n_4, n_5) = 1 + f(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3, n_3 \times n_4, n_4 \times n_5) & \text{if } n_1 > 0. \end{cases}$$

$$\begin{split} F : \mathcal{P}(\llbracket 1, k \rrbracket) &\to \mathcal{P}(\llbracket 1, k \rrbracket) \\ I &\mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\} \\ & \cup \left\{ i \mid n_i \text{ appears in an expression } \Psi_j \\ & \cup \left\{ i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \right\} \end{split}$$

• First, n_1 is relevant because of the boundary conditions.

$$\begin{cases} f(n_1, n_2, n_3, n_4, n_5) = 0 & \text{if } n_1 \le 0\\ f(n_1, n_2, n_3, n_4, n_5) = 1 + f(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3, n_3 \times n_4, n_4 \times n_5) & \text{if } n_1 > 0. \end{cases}$$

 $F: \mathcal{P}(\llbracket 1, k \rrbracket) \to \mathcal{P}(\llbracket 1, k \rrbracket)$ $I \mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\}$ $\cup \begin{cases} i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \end{cases}$

- First, n_1 is relevant because of the boundary conditions.
- To compute n_1 , we need n_3 ,

$$\begin{cases} f(n_1, n_2, n_3, n_4, n_5) = 0 & \text{if } n_1 \le 0\\ f(n_1, n_2, n_3, n_4, n_5) = 1 + f(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3, n_3 \times n_4, n_4 \times n_5) & \text{if } n_1 > 0. \end{cases}$$

 $F: \mathcal{P}(\llbracket 1, k \rrbracket) \to \mathcal{P}(\llbracket 1, k \rrbracket)$ $I \mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\}$ $\cup \begin{cases} i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \end{cases}$

- First, n_1 is relevant because of the boundary conditions.
- To compute n_1 , we need n_3 , and thus also n_2 .

$$\begin{cases} f(n_1, n_2, n_3, n_4, n_5) = 0 & \text{if } n_1 \le 0\\ f(n_1, n_2, n_3, n_4, n_5) = 1 + f(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3, n_3 \times n_4, n_4 \times n_5) & \text{if } n_1 > 0. \end{cases}$$

 $F: \mathcal{P}(\llbracket 1, k \rrbracket) \to \mathcal{P}(\llbracket 1, k \rrbracket)$ $I \mapsto I \cup \{i \mid n_i \text{ appears in a condition } \phi_j\}$ $\cup \begin{cases} i \mid n_i \text{ appears in an expression } \Psi_j \\ \text{via a path going only through } f \text{ via indices } i' \in I \end{cases}$

- First, n₁ is relevant because of the boundary conditions.
- To compute n_1 , we need n_3 , and thus also n_2 .
- $\operatorname{lfp} F = \{1, 2, 3\}$, we can rewrite the equation to

$$\begin{cases} \tilde{f}(n_1, n_2, n_3) = 0 & \text{if } n_1 \leq 0\\ \tilde{f}(n_1, n_2, n_3) = 1 + \tilde{f}(n_1 - n_3 - 1, n_1 \times n_2, n_2 \times n_3) & \text{if } n_1 > 0. \end{cases}$$

Introduction 00000	Background	Pipeline 00000	Implementation 000000●	Order 0000000	Conclusio
Irrelevant	variables a	nalysis –	Before/After		
File Edit Options Buffers Tools ClaoSys C Visit New File Open Directory × Close :- module(_, [fact/2], [asset	ChoObg ChoOPP LPdoc ChoOps ChoHeb He → ↓Save ↓Save As ⇔Undo ❤cut C rtions, regtypes, nativeprop	lo Copy Deste QString Forward s, resdefs]).	PrintBuffer C	e Buffer 🥃 🤨 🔞 🕜 🗘	: 🎯 💁 ư 🛠
:- resource fuel. :- nead_cost(ub, fuel, 0), :- literal_cost(ub, fuel, 0), :- drait[cost(ub, fuel, 0), :- drait[cost(ub, fi], 0), :- entry fact(N,R) :- num * fact_aux(N,A,R) :- N > 0, mu(A,N,A1), N1 is N - 1,			<pre>>> (nume(N), nume(R), >> (nume(N), nume(R), + cost(lb,fuel,0). : true pred fact(N,R) : (num(N), var(R)) => (num(N), num(R), size(ub,int,R,inf)) + cost(ub,fuel,inf). fact(M,R); fact_aux(N,A,R). : true pred fact aux(N,A,R)</pre>		
fact_aux(N1,A1,R), fact_aux(0,A,R) :- R = A. :- impl_defined([aul/3]). :- urust_pred_mul(X,Y,Z) : num * num * var ⇒ num * num * var + (not_fails, is_det, (mul(X,Y,Z) :- 			<pre>: (num(N), num(A), term(A) ⇒ (num(A), num(A), num(A) : (mshare(1(R))), var(R), ground((R,A), num(A) > (ground((R,A), num(A) + (nt_claits, covered). : (num(A), num(A), num(A), s(num(A), num(A),</pre>)). um(N), num(A), term(R)) , num(A), num(R))	

Mark set

fact.pl All L19 (Ciao) -:--- fact_eterms_nf_resources_co.pl 17% L65 (Ciao)

: (num(N), num(A), var(R)) > (num(N), num(A), num(R),

Introduction 00000	Background	Pipeline 00000	Implementation 000000●	Order 0000000	Conclusic
Irrelevant	variables a	nalysis –	Before/After		
$\label{eq:constraints} \begin{array}{l} \label{eq:constraints} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	usObg Claster LPdcx Clasters Leaders Clasters inte ⊥two ⊥ was some the some transform of tions, regitypes, nativeprops)). nel.0). var.	, resdefs]).	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>>buffer</pre>	

-:--- fact.pl All L19 (Ciao) Mark set -:--- fact_eterms_nf_resources_co.pl 17% L46 (Ciao)

ntroduction	Background 0000	Pipeline 00000	Implementation 000000●	Order 0000000	Conclusio 000
Irrelevant	variables a	nalysis –	Before/After		
The left Optime Burther Nume	Guing Guing Guing Line ∑backs ⊂pains Gaing X Guing ⊥ine ∑backs ⊂pains ∰o [assertions, regityres, nativep . 0), . 0), . (0), fuel, 0), . (1), fuel, 0), mum * var,	nap E Gray Done Quingforant regis, reside(s)); fuel.l)).	<pre>>vector/v € €</pre>	 W), num(A), Leren(R)) um(A), num(F)) t_covered). p.p1 178_L46 (Ciao) 	C 4 ×

Other analyse + rewrite passes could be implemented, e.g. using change of variables or usage of inferred ranking functions.

Introduction	Background	Pipeline	Implementation	Order	Conclusion
00000	0000	00000	0000000	●000000	

Automated Approximate Recurrence Solving

• Design a *generic*, *approximate* recurrence solver.

Automated Approximate Recurrence Solving

- Design a *generic*, *approximate* recurrence solver.
- Observation: just like program semantics, solutions of recurrence equations may be seen as (least) fixed points of a well-chosen operator.

$$\begin{cases} f(0) = a \\ f(n) = f(f(n-1)) + 1, \ \forall n \in \mathbb{N}^* \end{cases} \qquad \Longleftrightarrow \qquad$$

$$S: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$$
$$g \mapsto \begin{pmatrix} n \mapsto \begin{cases} a & \text{if } n = 0\\ g(g(n-1)) + 1 & \text{otherwise} \end{cases}$$

Automated Approximate Recurrence Solving

- Design a *generic*, *approximate* recurrence solver.
- Observation: just like program semantics, solutions of recurrence equations may be seen as (least) fixed points of a well-chosen operator.

$$\begin{cases} f(0) = a \\ f(n) = f(f(n-1)) + 1, \ \forall n \in \mathbb{N}^* \end{cases} \qquad \longleftrightarrow \qquad \begin{cases} S : (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N}) \\ g \mapsto \begin{pmatrix} n \mapsto \begin{cases} a & \text{if } n = 0 \\ g(g(n-1)) + 1 & \text{otherwise} \end{cases} \end{cases}$$

• To make the theory work well, restrict ourselves to monotone recurrence equations, and use $D \stackrel{\Delta}{=} \mathbb{N}_{\infty} \to \mathbb{N}_{\infty}$, which is a complete lattice, as the domain of sequences.

First idea: Abstract interpretation of Recurrence equations

- With S : D → D an equation/operator on the concrete domain of sequences, f_{sol} = lfp S = sup_{α∈Ord} S^(α)(⊥).
- Use an abstract domain D^{\sharp} and abstract operator S^{\sharp} , $f_{sol} \leq \gamma(\operatorname{lfp} S^{\sharp})$.
- Using subsets of *D* (e.g. all affine sequences) as D^{\sharp} doesn't work well, so we use the power trick and use the domain of *sets of abstract bounds*.

Definition (Domain of abstract bounds)

Let A be a domain of abstract sequences, e.g. $A = \text{all affine sequences} \cong \mathbb{N}_{\infty} \times \mathbb{N} + \{\top_A\}$, with $\phi : A \to D$ a concretisation. We set $D^{\sharp} \triangleq (\mathcal{P}(A), \supseteq)$.

Proposition

We have a Galois connection $D \xrightarrow[]{\alpha}{} D^{\sharp}$, defined by $\alpha : D \to D^{\sharp} \qquad \gamma : D^{\sharp} \to D$ $f \mapsto \{f^{\sharp} \in A \mid f \leq_{D} \phi(f^{\sharp})\}, \qquad U \mapsto (n \mapsto \min_{f^{\sharp} \in U} \phi(f^{\sharp})(n)).$ Moreover, for any $U, \gamma \circ \alpha(U) = \uparrow U$. In particular, $\alpha(U) = \alpha(\uparrow U)$.

First idea: Abstract interpretation of Recurrence equations

In the ideal case, for an equation like f(0) = 0, f(n) = f(f(n-1)) + 1 when n > 0, we could do

First idea: Abstract interpretation of Recurrence equations

In practice, we don't have direct access to S, γ and α , so we need to design *transfer functions*. An abstract semantic $\llbracket \cdot \rrbracket^{\sharp} : \operatorname{Eqs} \to (A \to \mathcal{P}(A))$ is defined and extended to $\operatorname{Eqs} \to (\mathcal{P}(A) \to \mathcal{P}(A))$. For example, with affine functions,

$\begin{bmatrix} \operatorname{Cst} c \end{bmatrix}^{\sharp} (f^{\sharp}) = \{(0, c)\}$ $\begin{bmatrix} n \end{bmatrix}^{\sharp} (f^{\sharp}) = \{(1, 0)\}$	$ \left[\operatorname{Push} c \right]^{\sharp}(f^{\sharp}) = \begin{cases} \{(\infty, c)\} & \text{if } f^{\sharp} = \top_{A} \\ \{(a, c)\} & \text{if } f^{\sharp} = (a, b) \text{ and } b \leq a + c \\ \{(a, b - a), (b - c, c)\} & \text{if } f^{\sharp} = (a, b) \text{ and } b > a + c \end{cases} $
$\llbracket \mathtt{I} \rrbracket^*(t^*) = \{t^*\}$	$\llbracket \operatorname{Pop} \rrbracket^{\sharp}((a, b)) = \begin{cases} \{\top_A\} & \text{if } f^{\sharp} = \top_A \\ \{(a, b + a)\} & \text{if } f^{\sharp} = (a, b) \end{cases}$
$ \begin{split} \left\ \diamond \right\ ^{\sharp} (\top_{\mathcal{A}}, g^{\sharp}) &= \left\ \diamond \right\ ^{\sharp} (f^{\sharp}, \top_{\mathcal{A}}) = \{ \top_{\mathcal{A}} \} \\ & \text{for } \diamond \in \{+, \times, \circ, -\} \end{split} $	$ \begin{split} \left\ \text{Shift } \delta \right\ ^{\sharp}(f^{\sharp}) &= \begin{cases} \left(\left\ \text{Push } 0 \right\ ^{\sharp} \right)^{\delta}(f^{\sharp}) & \text{if } \delta \geq 0 \\ \{ \top_{A} \} & \text{if } \delta \leq 0 \text{ and } f^{\sharp} = \top_{A} \\ \{ (a, b + \delta a) \} & \text{if } \delta \leq 0 \text{ and } f^{\sharp} = (a, b) \end{cases} \end{split} $
$[+]^{\sharp}((a_1, b_1), (a_2, b_2)) = \{(a_1 + a_2, b_1 + b_2)\}$	$\llbracket \operatorname{Set}_{0} c \rrbracket^{\sharp}(f^{\sharp}) = \llbracket \operatorname{Push} c \rrbracket^{\sharp} \circ \llbracket \operatorname{Pop} \rrbracket^{\sharp}(f^{\sharp})$
$\begin{split} & \times \rrbracket^{\sharp} \left((a_1, b_1), (a_2, b_2) \right) = \left\{ \left(a_1 a_2 \infty + a_1 b_2 + a_2 b_1, b_1 b_2 \right) \right\} \\ & \text{where we set } 0 \times \infty = \infty \end{split}$	$= \begin{cases} \{(\infty, c)\} & \text{if } f^{\sharp} = \top_{A} \\ \{(a, c)\} & \text{if } f^{\sharp} = (a, b) \text{ and } b \leq c \end{cases}$
$[[\circ]]^{\sharp}((a_1, b_1), (a_2, b_2)) = \{(a_1a_2, a_1b_2 + b_1)\}$	$\{(a, b), ((a + b) - c, c)\}$ if $f^{\mu} = (a, b)$ and $b > c$
$\left\ = \right\ ^{\sharp} \left((a_1, b_1), (a_2, b_2) \right) = \left\{ \left(a_1 - a_2, b_1 - b_2 \right) \right\}$	f(n)
$\llbracket \operatorname{Mult}_{in} c \rrbracket^{\sharp}((a, b)) = \{(ca, b)\}$	6
$\left[\operatorname{Div}_{in} c\right]^{\sharp}((a,b)) = \left\{ \left(\left\lceil \frac{a}{c} \right\rceil, b \right) \right\}$	$\begin{array}{c} 1 \\ 4 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$

1

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, for a monotone equation/operator S, if f ≥ S(f) (prefix), then f ≥ lfp S.
 Similarly, if f ≤ S(f) (postfix), then f ≤ gfp S.
- In particular, when we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

$$S: f \mapsto n \mapsto \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ \max_{1 \le k \le n-1} f(k) + f(n-k) + n & \text{otherwise} \end{cases}$$

• $g: n \mapsto n^2$?

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, for a monotone equation/operator S, if f ≥ S(f) (prefix), then f ≥ lfp S.
 Similarly, if f ≤ S(f) (postfix), then f ≤ gfp S.
- In particular, when we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

$$S: f \mapsto n \mapsto \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ \max_{1 \le k \le n-1} f(k) + f(n-k) + n & \text{otherwise} \end{cases}$$

• $g: n \mapsto n^2$?

• (Sg)(0) = 0, (Sg)(1) = 1, and $(Sg)(n) = 1^2 + (n-1)^2 + n = n^2 - n + 2$ when $n \ge 2$, thus $Sg \le g$, thus $f_{sol}(n) \le n^2$.

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, for a monotone equation/operator S, if f ≥ S(f) (prefix), then f ≥ lfp S.
 Similarly, if f ≤ S(f) (postfix), then f ≤ gfp S.
- In particular, when we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

$$S: f \mapsto n \mapsto \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ \max_{1 \le k \le n-1} f(k) + f(n-k) + n & \text{otherwise} \end{cases}$$

• $f_{\rm sol}(n) \leq n^2$.

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, for a monotone equation/operator S, if f ≥ S(f) (prefix), then f ≥ lfp S.
 Similarly, if f ≤ S(f) (postfix), then f ≤ gfp S.
- In particular, when we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

$$S: f \mapsto n \mapsto \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ \max_{1 \le k \le n-1} f(k) + f(n-k) + n & \text{otherwise} \end{cases}$$

• $f_{\rm sol}(n) \leq n^2$.

• $g: n \mapsto \frac{1}{2}n^2$?

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, for a monotone equation/operator S, if f ≥ S(f) (prefix), then f ≥ lfp S.
 Similarly, if f ≤ S(f) (postfix), then f ≤ gfp S.
- In particular, when we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

$$S: f \mapsto n \mapsto \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ 1 \leq k \leq n-1 \end{cases}$$

• $f_{\rm sol}(n) \leq n^2$.

- $g: n \mapsto \frac{1}{2}n^2$?
- $(Sg)(0) \ge g(0), (Sg)(1) \ge g(1)$ and $(Sg)(n) = \frac{1}{2}(1^2 + (n-1)^2) + n = \frac{1}{2}n^2 + 1 \ge g(n)$, thus $g \le Sg$, thus $\frac{1}{2}n^2 \le f_{sol}(n)$.

Second idea: Pre-/Post-fixpoints as easily checkable bounds

- By the properties of lattices, if we can prove that there is only one solution to f = S(f), we get $f_{sol} \leq f$ for any prefixpoint and $f \leq f_{sol}$ for any postfixpoint.
- This gives a new simple proof method for complexity analysis equations.
- Because it is simple, it is amenable to automation.
 - Use some sort of divide-and-conquer heuristics ? Recent papers have improved dichotomy to deal with the lattice ([[1, n]])^d in logarithmic time, but their technique to deal with the case f ≤ Sf isn't easy to translate to general lattices.
 - Use some some of guess-and-check method ?
 A current technique (Lasso + SMT) tries to *fit* the *exact* solution using common complexity functions, and then check equality.
 Guessing *bounds* and then checking *inequality* seems more likely to succed.
 - Note that automatic check of $f_{sol} \le g$ is much harder than $f_{sol} = g$ given only the equation, and our method provides a way to do so in many cases.

Introduction	Background	Pipeline	Implementation	Order	Conclusion
00000		00000	0000000	0000000	●00

Conclusion

Summary and Next Steps

Contributions

- Implementation Classical Recurrence Solver
 - Small additions to the "table lookup" side of the solver,
 - New analyse + rewrite pass for irrelevant variable analysis,
 - Various small bugfixes.
- Theory New order-theoretical point of view
 - Abstract iteration, with a few domains,
 - Pre-/Post-fixpoints as "easily checkable bounds".

Possible Next Steps

- Implementation of algorithms, with their extensions.
- Design of new domains, e.g. using results of experiments with SMT solvers.
- Exploration of the new abstract point of views on "ideal size measures" as optimal abstractions, on $HCIR^{Sz} \leftrightarrow \text{RecEq}$ for rewritings, etc.
- Finish benchmark work on "the recurrence structure of real programs".
- Improvement in translation of imperative programs to equations (inference of ranking functions, output/output size relations, preservation of type properties, ...).
- Usage of analysis for optimisation.
- Improvement in energy models (VHDL, low-level runtime policies, etc.).
- Go further in contacts with industry/associations.
- At some point, include our cost analysis as a plugin of other tools? (Clang, Frama-C, ...).

ntroduction	

Thank you !

Automated Approximate Recurrence Solving