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Why Energy?

IT's share of global carbon emissions has grown from 2.5% to around 5% in the last ten years.

Networks (use) IT equipment

Computers (production)
100%

Data centers (use)

TVs (production)
Smartphones (production) “Terminals (use) -

) %
Others (production) Cooling Others tdle Average Peak

FIgU €. Energy Usage in IT. By subfield, and case studies on a data center.

@ Energy consumption of programs is relevant and understudied by carbon audit experts.

@ Also, potential applications to verification of embedded software or against side-channel
attacks.

@ Applicable to other resources than energy: time, memory, number of communications, ...
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Why Recurrence Equations?

@ There are both software and hardware components to such line
of work. In this internship, we focused more on the problem of
control flow analysis than on energy models.

@ The hard software problem is recursivity.
Use Horn Clauses as Intermediate Representation.

“Systems of recurrence equations may be seen as programs
stripped from information irrelevant to cost analysis”

@ Here, we don't really care about exact solutions of equations:
bounds on the solutions are satisfactory.
This is a research opportunity.
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Contents of this talk

© Background (Ciao/CiaoPP, Logic Programming, Abstract Interpretation)
@ Current pipeline for energy analysis of imperative programs
© Implementation of classical recurrence solving techniques

@ Proposal of new order-theoretical recurrence solving techniques
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Ciao / CiaoPP

An extensible logic programming language making full use of analysis/verification/optimisation.

® app_assrt.pl

DEXDIATW®®BCGQ@¢J8Q3»

t= module(_, [app/3], [assertions])

entry app(A,8,0) :

red app(h,8,0) ¢

app([1,Y

aDDUX\Ks], ¥s, [x|2s1)
ap(Xs,V5,25)

(Uist(A), list(B)
et et o> Ust(o).

beag

c ‘ « PP Preprocessor Option Browser @

Use Saved Menu cnmguxanon (menu_last_config)
Menu Level (menu_level)

Action (inter_all)

Analysis Domain (assert_ctcheck)

Modules to Check (ct_modular)

Customize Analysis Flags (check_config_ana)
Analyze Non-Failure (ana_nf)

Analyze Numeric (ana_num)

Analyze Cost (ana_cost)

5 app_assrt.pl  Ciso  00e® o AW Analyze Determinism (ana_det)
SO otecte 12 400 wese) Analysis entry (entry_point)
Increnental (incremental)
- Internodular (internod)
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ciaopp 1- | Output Language (output_lang)
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B s (¥ (ape 8 aertonmsces ypesstVepczpe]) ) e emults (ver)
C g . . Z : | Collapse Versions (collapse_ai_vers)
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u gl 5 error
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(Uist(w), List(®), ist(©) )
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Message (Checker)
Errors detected. Further preprocessing
Verified assertion:
heck calls nrev(A,s)
: list(®). (cioopp-cost)
Verified assertion:
- chack succass nrev(a,B)
: list
= Ust(B). (claopp-cost)
False assertion
check comp nrev(A,8)
List(A)
+ ( not_fails, is_det, steps_o(lens
because the com field is incorpatibls
[oeerie.com) covered, is_det,mut_excs
Verified assertior
k calls mn({l,ﬂ,() Cciaopp-ca

18,0
+ ( terminates, is_det, steps_oCles
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Logic Programming

@ Fact, rules and queries.
@ Programing with Relations: nondeterminism and no fixed input/output status.

@ Execution <+ automated proof search. Computation happens by unification.
@ Using Logic Programs as (Horn Clause) Intermediate Representation of imperative

programs,

the only control structure is function call.

@ AND-OR trees, sets of substitutions, ...

vertical (segment(point(X,_),point (X, ))).
horizontal (segment (point (_,¥),point(_,¥))).

aetse AP bor_andels) (S
‘ hor_and_ver(S) :- vertical(s), horizontal(s).
{5 sogmenpoim(2,3). 7)) bor_and_ve(S) - vecal(S), boronsS). {5 segmenpoin(2,3).po2, )
hor_or_ver(S) :- vertical(S).
hor_or_ver(S) :- horizontal(S).
{S + segment(point(2,3). P)}  ver {8 + segment(point(2, 3), point(2, Y2))} (S « segment(point(2.3), point(2.3))}
Xe2viesve ) e 2Xe2yed) Pie2Xe2yed) ?- hor_and_ver (segment (point(2,3), P)).
(X 2% 36 Y2 vercalisegmen(pom (X 1) pinXY2) [ECST———. S p— P - point(2, _1658)

P = point(_1364, 3)
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Abstract Interpretation

@ A general theory of sound abstractions of program semantics, based on order theory
and Galois connections between lattices called concrete and abstract domains.

Figure: Abstract Interpretation was first developed by Patrick and Radhia Cousot in the 70's.

@ Observation: program semantics can be viewed as the Jeast fixed point of some

monotone operator.

Syntax for Usual Syntax

Usual Syntax rewrite Y
modified program X o (absrnct exaction)
) ) Usual Semantic extract (forget) i
Usial Semantic s oy Abstrct Semantic ol Seman 2 | Nosract Semantic
eg P(X7) i.e. desired information -

Figu re: “Execute then Abstract” or “Abstract then Execute”, or even “Execute Abstractly".
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Pipeline
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Code transformation (1)

int fact(int n){ <fact>: fact(RO, RO_3) :-
if(n <= 0) 001: entsp 0x2 entsp(0x2),
return 1; 002: stw r0, splox1] stw(RO, SpOx1),
return n*fact(n-1); 003: 1dw rl, splOx1] ldw(R1, SpOx1),
¥ 004: ldc r0, 0x0 1ldc(RO_1, 0x0),
005: 1ss r0, ril 1ss(RO_2, RO_1, R1),
006: bf <008> bf(RO_2, 0x8) ,
fact_aux(RO_2, SpOx1, RO_3, R1_1).
007: bu <010>
010: 1dw r0, splox1] fact_aux(1, SpOx1, RO_4, R1) :-
011: sub r0, r0, Ox1 bu(0x04),
012: bl <fact> 1dw(RO_1, SpOx1),
sub(RO_2, RO_1, 0x1),
013: 1ldw rl, sploxi] bl(fact),
014: mul r0, rli, r0 fact(RO_2, RO_3),
015: retsp 0x2 1ldw(R1, SpOx1),
mul(RO_4, R1, RO_3),
008: mkmsk r0, Ox1 retsp(0x2).

009: retsp 0x2
fact_aux(0, SpOx1, RO, R1) :-
mkmsk (RO, 0x1),

Figure: C program (left) translated into ISA level (middle) and HCIR from ISA (right).
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Code transformation (2)

int fact(int n){

if(n <= 0)
= <
return 1 f— Sztace(n) =1 when n< 0,
return nxfact(n-1); SZsact(n) = N X Szgace(n — 1)  otherwise.

@ The recurrence structure of programs appears in the corresponding
equations.

@ This is a simple case. In general, size measure may introduce abstractions,
and we use both size and cost functions.

@ When translating imperative loops into recursive programs, ranking
functions may have to be inferred.
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The energy model problem

@ Need to create models by measurements or simulation.

@ A simple model might assign a constant consumption to each type of
instruction, or a reasonably tight interval.

@ More complex models might care about history of previous instructions, e.g.
pairs of instructions, or about value of operands (data-dependent
consumption).

@ Can be important to deal with “hardware’s runtime policies”, e.g. cache
behaviour. Static analysis techniques exist, but it is hard.

@ Choosing the right level of granularity is hard.
May have to do compromises depending on the application.
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@ Adding some classical techniques to the recurrence solver

e "Dictionary lookup”

o Rewriting
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Conclusion

Adding classical recurrence solving techniques

@ Second and third order linear recurrence equations with constant coefficients and a few

options for the affine term. Classical method with particular solution + homogeneous
solution using roots of characteristic polynomial

@ Required to add complex numbers to CiaoPP (and to its numerical expressions)

Fle Edi Option

== g (] Qstring Farvard
list(gnd) * va
. . i
Gvstriewrie o )

Tp(IY.ZIR]. L1), p(IZIR]
p(IY.ZIR]. L1), p(IZIR], L2), p(R 1 P, (2, 1
append (L1, L2, L4), append(L4, L3
end([1., X

L2), p(R, L3)
X)
end (THIXT. Y. [H|Z1)

append(L4, L3, T)
- append(X. Y. 2)

)
[H1Z1)
third ord.pl

- append(X. Y. 2)
Bot L11

Bot L1l (Ciao)
e ( )
PCA.T)
list(gnd. A).
ist(gnd,_A).
size(lb,length, T

var(T) )
list(gnd,T)
ze(1b h.T,ccomplex(-0.25951582498161835, -0 umzxuﬂauz«:«:w
ccomplex(-0.4196 60760804, -0.6 sva7z°zr 1993) **Length (_A)+ccomplex (
951562496161824.6. 14 3967459299 ex(-0.41964337760708065,0 63629(7
292071993) **Length (_A) +ccomplex(0.51 96316499632366.1.72146563912634 126 1)
1.8392867552141612* * Length(_A)) )
PCAT)
ist(gnd, A), var(T) )
ist(gnd,_A), list(gnd,T)
size(ub, length,T,inf) )

var(T) )

> ( hn«pm . list(gnd,T)
size(ub, length,T,ccomplex(-0.25951 ,wmamsl' 0.1422223907459299) *
omplex (-0.4196433776070804, -0. 606296
582498161824,6.14222239074592993) *ccor
*Length(_A)+ccomple $190316495632366, -1 /uahxxwuu
1.8392867552141612** Length(_A)) )
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Irrelevant variables analysis — An analyse + rewrite pass

Example from cost analysis of a fact program with accumulator.

f(nja)=1+f(n—1,(n—1)xa) ifn>0,
f(n,a)=0 if n<0.
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Irrelevant variables analysis — An analyse + rewrite pass

Example from cost analysis of a fact program with accumulator.

f(nja)=1+f(n—1,(n—1)xa) ifn>0,
f(n,a)=0 if n<0.

4

f(ny=1+f(n—1) ifn>0,
f 0 if n<0.
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Irrelevant variables analysis — Fixpoint formulation

f(nja)=1+f(n—1,(n—1)xa) ifn>0,
f(n,a)=0 if n<0.

@ In general, we do this by overapproximating the set of relevant indices,
as the Ifp of the following operator.

F: ([, K]) - P([L, k])
I'— 1'U{i|n; appears in a condition ¢;}

o{i

n; appears in an expression W;
via a path going only through f via indices i’ € |
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Irrelevant variables analysis — Fixpoint formulation

f(nja)=1+f(n—1,(n—1)xa) ifn>0,
f(n,a)=0 if n<0.

@ In general, we do this by overapproximating the set of relevant indices,
as the Ifp of the following operator.

F (LKD) = P([L, kD)
I'— 1'U{i|n; appears in a condition ¢;}

o{i

@ In this example, only n is added, using the boundary conditions:

n; appears in an expression W;
via a path going only through f via indices i’ € |

Ifp F = {1}.
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Irrelevant variables analysis — Fixpoint formulation (2)

f(n1,n2,n3,n4,ns) =0 if n1 <0
f(n1,n2,n3,na,n5) =14 f(n1 —n3 —1,n1 X np,n2 X n3,n3 X na,ng X ns) if ng >0.
@ Again, we overapproximate the set of relevant indices, as the lfp of F.

FP([L kD) = P([L. kD)
I — 1U{i|n; appears in a condition ¢;}

ofi

n; appears in an expression V;
via a path going only through f via indices i’ € /
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FP([L, kD) = P([L. kD)
I'— 1'U{i|n; appears in a condition ¢;}

ofi

o First, ny is relevant because of the boundary conditions.

n; appears in an expression V;
via a path going only through f via indices i’ € /
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f(n1,n2,n3,n4,ns) =0 if n1 <0
f(n1,n2,n3,na,n5) =14 f(n1 — n3 —1,n1 X np,n2 X n3,n3 X na,ng X ns) if ng > 0.
@ Again, we overapproximate the set of relevant indices, as the lfp of F.

FP([L, kD) = P([L. kD)
I'— 1'U{i|n; appears in a condition ¢;}

o

o First, ny is relevant because of the boundary conditions.

n; appears in an expression W;
via a path going only through f via indices i’ € /

@ To compute ny, we need n3,
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Irrelevant variables analysis — Fixpoint formulation (2)

f(n1,n2,n3,n4,ns) =0 if n1 <0
f(n1,n2,n3,na,n5) =14 f(n1 — n3 — 1,01 X na,n> X n3,n3 X na,ng X ns) if ng > 0.
@ Again, we overapproximate the set of relevant indices, as the lfp of F.

FP([L, kD) = P([L. kD)
I'— 1'U{i|n; appears in a condition ¢;}

o

o First, ny is relevant because of the boundary conditions.

n; appears in an expression W;
via a path going only through f via indices i’ € /

@ To compute ny, we need n3, and thus also n,.
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Irrelevant variables analysis — Fixpoint formulation (2)

f(n1,n2,n3,n4,ns) =0 if n1 <0
f(n1,n2,n3,na,n5) =14 f(n1 — n3 — 1,01 X na,n> X n3,n3 X na,ng X ns) if ng > 0.
@ Again, we overapproximate the set of relevant indices, as the lfp of F.

FP([L, kD) = P([L. kD)
I'— 1'U{i|n; appears in a condition ¢;}

o

First, ny is relevant because of the boundary conditions.

n; appears in an expression W;
via a path going only through f via indices i’ € /

To compute ny, we need n3, and thus also n».
Ifp F = {1,2,3}, we can rewrite the equation to

f(n1,n2,n3) =0 ifn <0
f(nl, n2,n3) =1+ F(n]_ —n3 —1,n1 X na,ny X n3) if np > 0. ’
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Irrelevant variables analysis — Before/After

File Edt Optio

Buffers Tools CiaoSys CiaoDbg G . CiaoOpts Ciaokelp Help

Qvisktiewric Bovenoin X close e o [Joue Q piocouter @ @ ceegeeceenw
module(_, [fact/2], [assertions, regtypes, nativeprops, resdefs]) ue fact(N,R)
 num(N), var(R) )
:- resource fuel. = ( num(N), num(R),
:- head_cost(ub, fuel, 0) size(lb,int,R,inf) )
:- literal_cost(ub, fuel, 0) + cost(lb,fuel,0)
- default_cost(ub,fuel.0)
- trust_default+cost (ub, fuel,®) rue fact(N.R)
C nun(N), var(R) )
entry fact(N,R) : num * var > ( num(N), num(R)
fact(N,R) size(ub,int,R,inf) )
Ads 1 + cost(ub,fuel,inf)
fact_aux(N.A,R)
fact(N,R) :-
fact_aux(N,A,R) :- Ads 1,
N . fact_aux(N,A,R)
mul(A.N,A1)
N1 is N - 1, rue fact_aux(N,A,R)
fact_aux(N1,A1,R) C num(N), num(A), term(R) )
] > ( num(N), num(A), num(R) )
fact_aux(@,A,R)
R=A true fact_aux(N,A,R)
( mshare([[R1])
([mul/3]) var(R), ground([N,A]), num(N), num(A), term(R) )
=> ( ground([N,A.R]), num(N), num(A), num(R) )
trust mul(X.,Y,Z) + ( not_fails, covered )
num * num * var
> num * num * num rue fact_aux(N,A,R)
+ (not_fails, is_det, cost(ub,fuel,1), cost(lb,fuel, 1)) ( num(N), num(A), var(R) )
> (_num(N), num(A), num(R)
mul(X,Y,Z) size(lb,int,R,inf) )
ZisX*Y + cost(1lb, fuel,inf)
rue fact_aux(N,A,R)
( num(N), num(A), var(R) )
=> ( num(N). num(A). num(R)
size(ub,int,R,inf) )
+ cost(ub, fuel,inf)

. fact_eterms_nf_resources co.pl _17% L65 _(Ciao)
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Irrelevant variables analysis — Before/After

File Edt Optio

Buffers Tools CiaoSys CiaoDbg G . CiaoOpts Ciaokelp Help

Qvstrewrie Bovenoir X ciose o Qo (Joaste Q procourer @ @ ceesgeceenqw
module(_, [fact/2], [assertions, regtypes, nativeprops, resdefs]) ue fact(N,R)
( num(N), var(R) )
:- resource fuel. = ( num(N), num(R),
:- head_cost(ub, fuel, ) size(1lb,int,R,0) )
:- literal_cost(ub, fuel, ) + cost(lb, fuel,0)
- default_cost(ub, fuel,0)
- trust_default+cost (ub, fuel,®) rue fact(N.R)
( num(N), var(R) )
entry fact(N,R) : num * var > ( num(N), num(R)
fact(N,R) size(ub,int,R.inf) )
Ads 1 + cost(ub, fuel, intliNI)
fact_aux(N,A,R)
fact(N,R) :-
fact_aux(N.A.R) :- Ais 1,
N> o, fact_aux (N.A.R)
mul(A,N,A1),
N1 is N - 1, rue fact_aux(N,A,R)
fact_aux (N1,A1,R)  num(N), num(A). term(R) )
] > ( num(N), num(A), num(R) )
fact_aux(@,A,R)
R=A true fact_aux(N,A,R)
( mshare([[R]])
(Imul/31) var(R), ground([N,A]), num(N), num(A), term(R) )
=> ( ground(IN.A.R]). num(N), num(A). num(R) )
trust mul (X.Y,2) + ( possibly_fails. possibly_not_covered )
num * num * var
> num * num * num rue fact_aux(N,A,R)
+ (not_fails, is_det, cost(ub,fuel,1), cost(lb,fuel,1)) C num(N), num(A), var(R) )
> ( num(N), num(A), num(R)
mul(X,Y,2) size(lb,int,R,0) )
ZisXx*y + cost(1b, fuel,0)
rue fact_aux(N,A,R)
( num(N), num(A), var(R) )
=> ( num(N). num(A). num(R)
size(ub.int.R.inf) )
+ cost(ub, fuel,int(N))

. fact_eterms_nf_resources co.pl _17% 46 (Ciao)

Automated Approximate Recurrence Solving 6 September 2022 22 /32



Introduction Background Pipeline Implementation Order
00000 [e]e]e]e]e 000000e

Conclusion

Irrelevant variables analysis — Before/After

Fle Edi Opons uffers Tools Chosys Caodbg CaoPP LPdoc Caoopts Ciaokelp Help

Qs iewrie Dhctors X close oo Qo [Jouste Q piniatc @ @ # Bara CceqegeCcCe@e Qv X
module(_, [fact/2], [assertions, regtypes, nativeprops, resdefsl) f. )
( num(N), var(R) )
( num(N) . num(R:
size(lb,int,R,0) )
+ cost(1lb,fuel.®)

resource fuel

head_cost(ub, fuel, )

Literal_cost(ub, fuel, 0)

default_cost(ub, fuel,0)

trust_default+cost (ub, fuel.0) LN.R)

Cnum(N) . var (R) )

entry fact(N.R) : num * var  num(N) . num(R)

fact(N,R size(ub,int.R.inf) )
Ads 1 + cost(ub, fuel, int[iNl)
fact_aux (N.A.R

fact (N.R)

aux (N.A.R

N> o

mul(A.N.AL)

NI is N -1

fact_aux(N1,AL,R)

is 1
fact_aux(N,A.R)

o fact_aux(N.A.R
C num(N) . num(A)
( num(N) . num(A)

J
fact_aux(,A.R
R=A e fact_aux(N.A.R)
( mshare([[RT])
var(R), ground([N,A1), num(N). num(A), term(R)
( ground(IN.A,R1). num(N), num(A), num(R) )
+ ( possibly_fails, possibly_not_covered )

(Imu1/31)

mul(X.Y.2)
* num * var
* num * num

e fact_aux(N,A.R)
+ (not_fails, is_det, cost(ub,fuel,1), cost(lb,fuel,1))  num(N)

num(A), var(R) )

> ( num(N), num(A), num(R)
size(lb,int,R.0) )

+ cost(1b, fuel,0)

mul(X,Y,2)

s X

fact_aux(N,A.R)
num(N) , num(A) . var(R) )

> ( num(N), num(A), num(R)
size(ub,int.R,inf) )

+ cost(ub, fuel, int(N))

—fact_eterms_nf_resources copl _17% 146 (Ciao)

Other analyse + rewrite passes could be implemented,
e.g. using change of variables or usage of inferred ranking functions.
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Automated Approximate Recurrence Solving

@ Design a generic, approximate recurrence solver.
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Automated Approximate Recurrence Solving

@ Design a generic, approximate recurrence solver.

@ Observation: just like program semantics, solutions of recurrence
equations may be seen as (least) fixed points of a well-chosen operator.

S:(N—=N)— (N—=N)

(0)=a @ a ifn=
{<>:f<<n—1>)+1\fne~* g”(””{g@(nfmﬂ ; 9)

otherwise

Automated Approximate Recurrence Solving 6 September 2022 24 / 32



Order
(o] lele]e]le]e]

Automated Approximate Recurrence Solving

@ Design a generic, approximate recurrence solver.

@ Observation: just like program semantics, solutions of recurrence
equations may be seen as (least) fixed points of a well-chosen operator.

S:(N—=N)— (N—=N)

(0)=a @ a ifn=
{(>:f<<n—1>)+1\fne~* g”(””{g@(nfmﬂ ; 9)

otherwise

@ To make the theory work well, restrict ourselves to monotone

. A L
recurrence equations, and use D = N, — N, which is a complete
lattice, as the domain of sequences.

Automated Approximate Recurrence Solving 6 September 2022 24 / 32



Order
[e]e] le]ele]e]

First idea: Abstract interpretation of Recurrence equations

e With S: D — D an equation/operator on the concrete domain of
sequences, fio] = Ifp S = sup,corg S (L).

@ Use an abstract domain D and abstract operator S¥, £,,; < ~(Ifp S).

@ Using subsets of D (e.g. all affine sequences) as D doesn't work well,
so we use the power trick and use the domain of sets of abstract bounds.

Definition (Domain of abstract bounds)

Let A be a domain of abstract sequences, e.g.
A = all affine sequences 2 N X N+ {Ta}, with ¢ : A — D a concretisation.
We set D* £ (P(A), D).

We have a Galois connection D <—= D*, defined by
a:D— D v:D = D
f {ff e A|f <p o(f")}, U (ne min o(f1(n)).
fieu

Moreover, for any U, v o a(U) =1 U. In particular, a(U) = a( 1 U).
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First idea: Abstract interpretation of Recurrence equations

In the ideal case, for an equation like £(0) =0, f(n) = f(f(n—1))+1 when n > 0, we could do

So¢ on extremal bounds

Dt 2 P(D)
Cunion of a's
L =1on+0} {01*}
aoSoyC

~

M1n+0,0n+1} — 5 {1n+0, 02*}

—

1n+0, .
_—
T{ 2+ 0, On +2 } {1n+0, 037}

/

+ 1n+0,
3n+0,0n+3
I

M1n+0, T} = {1n+0}
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First idea: Abstract interpretation of Recurrence equations

In practice, we don't have direct access to S, v and «, so we need to design transfer functions.

An abstract semantic [-]*
For example, with affine functions,

[Cst cJ*(F*) = {(0, )}
0% (¢ = {(1,0)}
Ie1%(F%) = {*}

1018 (Tar &%) = [01%(F*, Ta) = {Ta}
for & € {+, x,0,—-}
[+ (a1, ba), (a2, b2)) = { (a1 + a2, by + b2) }
[x1%((a1, ba), (a2, b2)) = {(azaz00 + a1ba + azby, biba)}
where we set 0 X oo = oo
[0]%((a1, ba), (a2, b2)) = {(a1a2,a1b2 + b1) }
[-1%((a1, ba), (a2, b2)) = { (a1 — a2, b1 — b2) }

[Mult;, c]*((a, b)) = {(ca, b)}

[Divi, cl*((a, b)) = {(EW ) b)}

Automated Approximate Recurrence Solving

{(oo <) =T,
[Push c]*( {(a, ) if = (a,b)and b<a+c
{(a, b—a ), (b—c,c)} iffi=(ab)andb>atc
S {Ta} =Ty
[Popl¥( { (a,b+a)} if P =(a,b)
([Push 0]#)5(F%) if5>0
[Shift 5]%( {Ta} ifs<Oand fl =T,
((a b+ 8a)} if 5 < 0and fi = (a, b)
[Seto c]*(f¥) = [Push c]* o [Pop]¥(*)
(o0, €)} =T,
{(ac if f = (a,b)and b < ¢
{(a,b),((a+b) —c,c)} ifff =(ab)andb>c
f(n)
6 V.4
5
a 1n + 3 (green)
[Push 1](Ln + 3) (frontier)
3 [Push 1]#(1n + 3) (blue)
2
14
0 n
1 2 3 4 5

6 September 2022

: Eqs — (A — P(A)) is defined and extended to Eqs — (P(A) — P(A)).
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

@ By the properties of lattices, for a monotone equation/operator S,
if f > S(f) (prefix), then f > 1fp S.
Similarly, if f < S(f) (postfix), then f < gfp S.

@ In particular, when we can prove that there is only one solution to f = S(f),
we get fio1 < f for any prefixpoint and f < £, for any postfixpoint.

@ This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may
arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

0 ifn=0
S:f—n— 1 ifn=1
max f(k) + f(n— k) + n otherwise
1<k<n—1

@ g:n—n??
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@ By the properties of lattices, for a monotone equation/operator S,
if f > S(f) (prefix), then f > 1fp S.
Similarly, if f < S(f) (postfix), then f < gfp S.

@ In particular, when we can prove that there is only one solution to f = S(f),
we get fio1 < f for any prefixpoint and f < £, for any postfixpoint.

@ This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may
arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

0 ifn=0
S:f—n— 1 ifn=1
max f(k) + f(n— k) + n otherwise
1<k<n—1

@ g:n—n??

@ (Sg)(0) =0, (Sg)(1) =1, and (Sg)(n) =12+ (n—1)>+ n=n? — n+ 2 when
n> 2, thus Sg < g, thus f,o1(n) < n?.
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

@ By the properties of lattices, for a monotone equation/operator S,
if f > S(f) (prefix), then f > 1fp S.
Similarly, if f < S(f) (postfix), then f < gfp S.

@ In particular, when we can prove that there is only one solution to f = S(f),
we get fio1 < f for any prefixpoint and f < £, for any postfixpoint.

@ This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may
arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

0 ifn=0
S:f—n— 1 ifn=1
max f(k) + f(n— k) + n otherwise
1<k<n—1

° fou(n) < n?.

. 129
@ g:nr>3n° 7
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

@ By the properties of lattices, for a monotone equation/operator S,
if f > S(f) (prefix), then f > 1fp S.
Similarly, if f < S(f) (postfix), then f < gfp S.

@ In particular, when we can prove that there is only one solution to f = S(f),
we get fio1 < f for any prefixpoint and f < £, for any postfixpoint.

@ This gives a new simple proof method for complexity analysis equations.

Example

Consider the following equation, written as a sequence operator. Such equation may
arise while doing worst-case analysis of a quicksort program. S is indeed monotone.

0 ifn=0
S:f—n— 1 ifn=1
max f(k) + f(n— k) + n otherwise
1<k<n—1

° fou(n) < n?.
e g:n— %nz ?

° (5g)(0) > £(0), (Sg)(1) = g(1) and
(Sg)(n) = %(12 +(n—1)2)+n= %nz +1 > g(n), thus g < Sg, thus
%’72 < fsol(n)'
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Second idea: Pre-/Post-fixpoints as easily checkable bounds

@ By the properties of lattices, if we can prove that there is only one solution
to f = S(f), we get fio1 < f for any prefixpoint and f < £ for any
postfixpoint.

@ This gives a new simple proof method for complexity analysis equations.

@ Because it is simple, it is amenable to automation.

@ Use some sort of divide-and-conquer heuristics ?
Recent papers have improved dichotomy to deal with the lattice ([1, n])? in
logarithmic time, but their technique to deal with the case f £ Sf isn't easy to
translate to general lattices.

@ Use some some of guess-and-check method ?
A current technique (Lasso + SMT) tries to fit the exact solution using
common complexity functions, and then check equality.
Guessing bounds and then checking inequality seems more likely to suceed.

@ Note that automatic check of f,,; < g is much harder than f,;) = g given only
the equation, and our method provides a way to do so in many cases.
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Summary and Next Steps

Contributions

@ Implementation — Classical Recurrence Solver

@ Small additions to the “table lookup” side of the solver,
@ New analyse + rewrite pass for irrelevant variable analysis,
@ Various small bugfixes.

@ Theory — New order-theoretical point of view

@ Abstract iteration, with a few domains,
@ Pre-/Post-fixpoints as “easily checkable bounds".

Possible Next Steps

@ Implementation of algorithms, with their extensions.
@ Design of new domains, e.g. using results of experiments with SMT solvers.

@ Exploration of the new abstract point of views on “ideal size measures’ as optimal abstractions, on
HCIRS? RecEq for rewritings, etc.

Finish benchmark work on “the recurrence structure of real programs”.

Improvement in translation of imperative programs to equations (inference of ranking functions,
output/output size relations, preservation of type properties, ...).

Usage of analysis for optimisation.

Improvement in energy models (VHDL, low-level runtime policies, etc.).

Go further in contacts with industry/associations.

@ At some point, include our cost analysis as a plugin of other tools? (Clang, Frama-C, ...).
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Thank you |
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