
Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstractions of Sequences,
Functions and Operators

Louis Rustenholz1,3, in collaboration with
Pedro López-Garćıa2,3 and Manuel V. Hermenegildo1,3

1Universidad Politécnica de Madrid (UPM), Spain
2Spanish Council for Scientific Research (CSIC), Spain

3IMDEA Software Institute, Spain

CSV, June 5th, 2025
Università Ca’ Foscari, Venezia

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 1 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Introduction

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 2 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Introduction

Infer information about mathematical functions
given by a recursive definition,
i.e. by an operator/equation.

➔ Role of order theory and abstract interpretation.

Share some order theory facts, Galois connections, ...
discovered along the way.

Present (domain specific?) abstract domains
built using functions as the basic object.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 3 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Intuition

Idea to be explored

Functions X → Y may be simpler objects
than arbitrary sets of points P(X × Y) (relations).

Of course, not in general, but...

Can be the case for families of functions we care to approximate
➔ Exploit local regularity
➔ Relate definition with that of simpler functions
➔ ...

Analysis viewpoint

We are interested in numerical functions,

constructed/defined recursively by an operator

Φ ∈
(
(X → L)→ (X → L)

)
, i.e. by an equation.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 4 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Origin and Motivation: Cost Analysis

Cost Analysis: Bounds on Resource Consumption

Program P
def foo(lst, x) =

<body>

Cost Model
(low-level hardware model)

Cost(add) = < ... >
type Cache := < ... > [...]

+
Cost

Analysis

?

?

Cost Bounds

flb(n⃗) ≤ Costfoo ≤ fub(n⃗)

Size Abstraction

n1 = len(lst), n2 = val(x), ...

Â

õ

Û

E

Pipeline implemented in (and other analysers).

Recurrence-based cost analysis

Program

P

Cost Model

+
HC-IR

P̃
Size

Abstraction

Recurrence

Equations

Recurrence
Solving

Cost Bounds (Sizes→ I(R), ⊑̇)

Costfoo ∈ [flb, fub](n⃗)

Size Abstraction

Data→ Sizes, (Sizes→ I(Sizes), ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 5 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Origin and Motivation: Cost Analysis

Cost Analysis: Bounds on Resource Consumption

Program P
def foo(lst, x) =

<body>

Cost Model
(low-level hardware model)

Cost(add) = < ... >
type Cache := < ... > [...]

+
Cost

Analysis

?

?

Cost Bounds

flb(n⃗) ≤ Costfoo ≤ fub(n⃗)

Size Abstraction

n1 = len(lst), n2 = val(x), ...

Â

õ

Û

E

Pipeline implemented in (and other analysers).

Recurrence-based cost analysis

Program

P

Cost Model

+
HC-IR

P̃
Size

Abstraction

Recurrence

Equations

Recurrence
Solving

Cost Bounds (Sizes→ I(R), ⊑̇)

Costfoo ∈ [flb, fub](n⃗)

Size Abstraction

Data→ Sizes, (Sizes→ I(Sizes), ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 5 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Intuition

Analysis viewpoint

We are interested in numerical functions,

constructed/defined recursively by an operator

Φ ∈
(
(X → L)→ (X → L)

)
, i.e. by an equation.

Function defined recursively in a declarative language,

Input/output of a basic block in an imperative language,

Cost function obtained as the solution of a recurrence equation,

Solution of a differential equation, ...

➔ Can we build abstract lattices of functions, and
abstract these operators/equations

(
Φ⇝ Φ♯

)
to

produce bounds fsol ⊑̇ f̂ by abstract Kleene iteration?

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 6 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Intuition

Analysis viewpoint

We are interested in numerical functions,

constructed/defined recursively by an operator

Φ ∈
(
(X → L)→ (X → L)

)
, i.e. by an equation.

Function defined recursively in a declarative language,

Input/output of a basic block in an imperative language,

Cost function obtained as the solution of a recurrence equation,

Solution of a differential equation, ...

➔ Can we build abstract lattices of functions, and
abstract these operators/equations

(
Φ⇝ Φ♯

)
to

produce bounds fsol ⊑̇ f̂ by abstract Kleene iteration?

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 6 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Order theory framework of equations [SAS24]

Equations ↔ Operators Solutions ↔ Fixpoints Bounds ← Pre/Postfixp

fsol

f ≤ fsol

Prefp(Φ)

fsol ≤ f ?
Φf ≤ f✓

Postfp(Φ)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 7 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Equation solving as pre/postfixpoint search [SAS24]

fsol

⊥

Φ♯(⊥)

(Φ♯)2(⊥)

(Φ♯)3(⊥)

f ♯ ∈ Postfp⊑(Φ♯)

Φ♯

Φ♯

Φ♯

∇

Abstract Interpretation

fsol

M
Model Space

f̂

Search on subvarieties: Templates, ∀-elim

fsol
fcand ,(1)

Ψ1

Ψ2

repair
refine

fcand ,(2)

λ · rk(n⃗)

Geometry-based expression Repair

Constrained Optimisation,
with provability constraints

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 7 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Equation solving as pre/postfixpoint search [SAS24]

fsol

⊥

Φ♯(⊥)

(Φ♯)2(⊥)

(Φ♯)3(⊥)

f ♯ ∈ Postfp⊑(Φ♯)

Φ♯

Φ♯

Φ♯

∇

Abstract Interpretation

fsol

M
Model Space

f̂

Search on subvarieties: Templates, ∀-elim

fsol
fcand ,(1)

Ψ1

Ψ2

repair
refine

fcand ,(2)

λ · rk(n⃗)

Geometry-based expression Repair

Constrained Optimisation,
with provability constraints

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 7 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

(Abstract) Lattices of Functions
and Galois Connections between them

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 8 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Lattices of Functions

Pointwise lattice structure

For X a set and (L,≤,∨,∧) a complete lattice, the set of functions
X → L has a very natural lattice structure (X → L, ≤̇, ∨̇, ∧̇), with

f ≤̇ g
∆⇐⇒ ∀x ∈ X , f (x) ≤ g(x),

f ∨̇ g ∆
=
(
x 7→ f (x) ∨ g(x)

)
, ⊥̇ ∆

=
(
x 7→ ⊥

)
,

f ∧̇ g ∆
=
(
x 7→ f (x) ∧ g(x)

)
, ⊤̇ ∆

=
(
x 7→ ⊤

)
.

Example (Numerical functions)

In (D → R, ≤̇), join and meet
are pointwise max/min.
⊥̇ = x 7→ −∞.

Example (Set-valued functions)

In (D → I(R), ⊑̇I), join/meet
are pointwise union/intersection.

We are interested in objects which can be viewed as functions,
constructed/defined as fixpoints of some operator Φ ∈

(
(X → L)→ (X → L)

)
,

which is monotone for such an order on functions (to apply Knaster-Tarski).

Function defined recursively in a declarative language,
Input/output of a basic block in an imperative language,
Cost function obtained as the solution of a recurrence equation,
Solution of a differential equation, ...

➔ Can we abstract these lattices
(
D −−−→←−−−α

γ
D♯

)
and these operators

(
Φ⇝ Φ♯

)
to produce bounds fsol ⊑̇ f̂ ∈ Postfp(Φ) by abstract Kleene iteration?

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 9 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Overview: a landscape of abstractions

From symbolic functions to manageable numerical functions

Symbolic
functions

Numerical-set
functions

Abstract
numerical-set
functions

Numerical
functions

Simple
numerical functions
(B ⊆ (Nk → R))

ΦData ΦP ΦI ΦN Φ♯

Data Nr Nr Nk

D♯ = P↑(B)

P(Data× R) P(Ns × R) I(N)s × I(R) R

size
abstraction

codomain
abstraction

separability
(≤-monotonicity),
reductions, ...

B-bounds
abstraction

Simplified picture: intervals for numerically non-monotone systems, lb+ub,
systems Φ ∈ End

(∏
τ (τin → τout)

)
vs single equation Φ ∈ End(τin → τout), ...

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 10 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Overview: a landscape of abstractions

From symbolic functions to manageable numerical functions

Symbolic
functions

Numerical-set
functions

Abstract
numerical-set
functions

Numerical
functions

Simple
numerical functions
(B ⊆ (Nk → R))

ΦData ΦP ΦI ΦN Φ♯

Data Nr Nr Nk

D♯ =
(P↓(B)× P↑(B))s+1

P(Data× R) P(Ns × R) I(N)s × I(R) R

size
abstraction

codomain
abstraction

separability
(≤-monotonicity),
reductions, ...

B-bounds
abstraction

Simplified picture: intervals for numerically non-monotone systems, lb+ub,
systems Φ ∈ End

(∏
τ (τin → τout)

)
vs single equation Φ ∈ End(τin → τout), ...

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 10 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Constructing Galois connections in function space

Many ways to build connections on functions from connections on values.

Proposition (Codomain abstraction)

Let (D,≤) −−−→←−−−α
γ

(D♯,⊑) and X be a set. This lifts to (X → D, ≤̇) −−−→←−−−
α̇

γ̇
(X → D♯, ⊑̇),

with α̇(f) = α ◦ f and γ̇(f ♯) = γ ◦ f ♯.

Definition (Endomorphisms are monotone endofunctions)

Let (L,⊑) be a partial order. End⊑(L) := {f : L→ L | ∀x ⊑ y , f (x) ⊑ f (y)}.

Proposition (End-lifting)

Let (D,≤) −−−→←−−−α
γ

(D♯,⊑). This lifts to a Galois connection

(End≤(D), ≤̇) −−−→←−−−
α⃗

γ⃗
(End⊑(D

♯), ⊑̇)
f 7−→ α ◦ f ◦ γ,

γ ◦ f ♯ ◦ α←−[f ♯.

D D

D♯ D♯

f

αγ

f ♯=α⃗(f)

Corollary

This can be iterated to operators in End2 ≈
(
(· → ·)→ (· → ·)

)
, and beyond.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 11 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Constructing Galois connections in function space

Many ways to build connections on functions from connections on values.

Proposition (Codomain abstraction)

Let (D,≤) −−−→←−−−α
γ

(D♯,⊑) and X be a set. This lifts to (X → D, ≤̇) −−−→←−−−
α̇

γ̇
(X → D♯, ⊑̇),

with α̇(f) = α ◦ f and γ̇(f ♯) = γ ◦ f ♯.

Definition (Endomorphisms are monotone endofunctions)

Let (L,⊑) be a partial order. End⊑(L) := {f : L→ L | ∀x ⊑ y , f (x) ⊑ f (y)}.

Proposition (End-lifting)

Let (D,≤) −−−→←−−−α
γ

(D♯,⊑). This lifts to a Galois connection

(End≤(D), ≤̇) −−−→←−−−
α⃗

γ⃗
(End⊑(D

♯), ⊑̇)
f 7−→ α ◦ f ◦ γ,

γ ◦ f ♯ ◦ α←−[f ♯.

D D

D♯ D♯

f

αγ

f ♯=α⃗(f)

Corollary

This can be iterated to operators in End2 ≈
(
(· → ·)→ (· → ·)

)
, and beyond.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 11 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L

...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L

...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let m : X → A be an arbitrary mapping,
and (L,⊑) be a complete lattice.
Then, there is a Galois connection

(X → L, ⊑̇) −−−→←−−−α
γ

(A→ L, ⊑̇)

f 7−→
(
a 7→

⊔
x∈m−1(a)

f (x)
)(

x 7→ f ♯
(
m(x)

))
←−[f ♯,

which is an insertion for m : X ↠ A.

“ α : f 7→ ⊔ f ◦m−1, γ : f ♯ 7→ f ♯ ◦m”

Corollary (Powerset lifting)

(P(X),⊆) −−−→←−−−α
γ

(P(A),⊆)

Corollary (For non-deterministic functions)

(X → P(X), ⊆̇) −−−→←−−−α
γ

(A→ P(A), ⊆̇)
(“f 7→ m−1 ◦ f ◦m and f ♯ 7→ m ◦ f ♯ ◦m−1”.)

X
A

f : X → L f ♯ : A→ L...

•

•
•

•

• •

...
•
•
•
•

m−1

m

u vf

u ⊔ v f ♯ = α(f)

⊥

Example (Size abstraction)

m : Data→ Sizes
e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Can also combine such size metrics.
Question of inference for a given program.
≈Dual approach: Sized-Types→ P(Data).

Example (Dimensionality reduction)

m : N3 → N2

(x , y , z) 7→ (x + y , z)
Important questions:

Inference for a given program Φ,
Computation of Φ♯, ...

Remark: Codomain abstraction is classical.
(X → D, ≤̇) −−→←−− (X → D♯, ⊑̇)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Examples

Affine bounds. B = {n 7→ an + b | a, b ∈ R} (one dim), n 7→ a⃗ · n⃗ + b (multidim).
Polynomial bounds (bounded degree). n 7→

∑
k≤d akn

k (monomial basis),

n 7→
∑

ak
(n
k

)
(binomial basis), multidim versions, ...

Poly-exp. n 7→
∑

ab,kb
nnk , or n 7→

∑
ab,k

(n
k

){n+1
b+1

}
(with Stirling numbers of 2nd kind), ...

Arithmetico-geometric sequences, Regular expressions on numbers,
∑

abnnk log(en + f)...
Extra features: initial exactness, piecewise behaviour (disjunctive versions), ...

Remark: functional version of a familiar concept (for relations) – constraint domains

For E ∈ P(RVars), αP(E) = Polyhedron↔
(
∀x ∈ E ,

∧
i

∑
j αi,jxj ≤ βi

)
,

αB(E) = Box↔
(
∀x ∈ E ,

∧
i ai ≤ xi ≤ bi

)
, αZ (E) = Zone↔

(
∀x ∈ E ,

∧
i,j xi − xj ≤ ci,j

)
, ...

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Galois connection – B-ubs

(D → R, ≤̇) −−−−→←−−−−
αB

γB
(P(B),⊇)

f 7−→
{
f ♯ub ∈ B

∣∣ f ≤̇ f ♯ub
}(

n⃗ 7→ min
f
♯
ub

∈F
♯
ub

f ♯ub(n⃗)
)
←−[F ♯

ub

In practice, we replace (P(B),⊇,∩,∪) by a more
computable representation (P↑,fin(B),⊑♯,⊔♯,⊓♯), with
A ⊑♯ B a sound approximation of ↑A ⊇↑B.

Remarks

We can restrict to up-closed sets P↑(B) :={
F ⊆ B

∣∣∣∀f ∈ F ,∀g ∈ B, f ≤̇ g ⇒ g ∈ F
}
.

Up-closure (↑) = αB◦γB : P(B)→ P↑(B).

Search for a finite number of generators

↑{f ♯1 , ..., f
♯
k } = αB(f),

(or at least an overapproximation of αB(f)).

➔ Add normalise and widening operators
to keep the representation bounded.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

With intervals – Galois connection with B-bounds: “flowpipes”

(D → I(R),
.

⊑I) −−−−→←−−−−
αB

γB
(P(B),⊇)× (P(B),⊇)(

n⃗ 7→

[
max
f
♯
lb
∈F

♯
lb

f ♯lb(n⃗), min
f
♯
ub

∈F
♯
ub

f ♯ub(n⃗)

])
←−[(F ♯

lb, F
♯
ub)

(flb, fub) 7−→

({
f ♯lb ∈ B

∣∣ ∀n⃗ ∈ D, f ♯lb(n⃗) ≤ flb(n⃗)
}
,{

f ♯ub ∈ B
∣∣∀n⃗ ∈ D, f ♯ub(n⃗) ≥ fub(n⃗)

})

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds — abstracting functions with simpler functions

A class of abstract domains for functions

For B ⊆ (D → R), let D♯ := (P(B),⊇) be
the domain of B-upper bounds.

(D → R, ≤̇) −−−→←−−−αB

γB
(P(B),⊇). For f : D → R,

αB(f) = F ♯
ub ←→

∧
f
♯
i ∈F

♯
ub

f ≤̇ f ♯i .
n

f (n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Proposition (convexity of constraint set)

When B is convex,

all α(f) are convex (in function space).

Example

Most of the templates B discussed before
are convex, e.g.

λ ·
(
n 7→

∑
akn

k
)
+ (1− λ) ·

(
n 7→

∑
bkn

k
)

=
(
n 7→

∑(
λak + (1− λ)bk

)
nk
)
.

➔ This reduces the problem of finding a minimal set of extremal bounds
(e.g. for transfer function synthesis) to finding generators of a convex set.

To make the problem tractable in practice, we often approximate the problem Φ(γ(f ♯)) ≤̇ g ♯,
and work in parameter space, using an order that is an incomplete abstraction of ≤̇, e.g.((

n 7→
∑

akn
k) ⊑♯ (n 7→∑

bkn
k)) ∆⇐⇒

(
∀k, ak ≤ bk

)
, (despite n2 − 1 ≥̇N 0).

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

B-bounds: discussion

We have discussed Galois connections, and mentioned that the
domain can support non-linear bounds.

Let’s make this concrete, with fully-fledged abstract domains:

add a language, (we will present an operator language)

design transfer functions,

showcase abstract iteration.

➔ Let’s build some B-bounds domains!

Other applications of B-bound domains, beyond abstract iteration:

Simplify analysis output for users: f ≤ gprecise ⇝
∧

i f ≤ gi,readable,

Help decide inequality of functions: f ≤̇(?)
g ,

...

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 14 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract Domains of Sequences:
A simple way towards non-linearity

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 15 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

⊥

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0}

Φ(◦γ) on extremal bounds

union of α’s

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

⊥

Φ(⊥)

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

Φ(◦γ) on extremal bounds

union of α’s

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

Φ♯(⊥♯)

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1}

Φ(◦γ) on extremal bounds

union of α’s

α◦Φ◦γ⊑

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

Fixed!

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1} {1n + 0, 02∗}

Φ(◦γ) on extremal bounds

union of α’s

α◦Φ◦γ⊑

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1} {1n + 0, 02∗}

↑
{

1n + 0,
2n + 0, 0n + 2

}

Φ(◦γ) on extremal bounds

union of α’s

α◦Φ◦γ⊑

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1} {1n + 0, 02∗}

↑
{

1n + 0,

����2n + 0 , 0n + 2

}
{1n + 0, 03∗}

↑
{

1n + 0,

����3n + 0 , 0n + 3

}

Φ(◦γ) on extremal bounds

union of α’s

α◦Φ◦γ⊑

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract iteration – what we want to get
Equation Φ(f) = ite(n > 0, f (f (n − 1)) + 1, 0), D = N→ N∞, B = Affines.

➔ We deal with extremal bounds separately.

n

f (n)

0 1 2 3 4

0

1

2

3

4

D♯ = P↑(B) P(D)

⊥♯ = ↑{0n + 0} {01∗}

↑{1n + 0, 0n + 1} {1n + 0, 02∗}

↑
{

1n + 0,

����2n + 0 , 0n + 2

}
{1n + 0, 03∗}

↑
{

1n + 0,

����3n + 0 , 0n + 3

}

↑{1n + 0, ⊤} = ↑{1n + 0}

Φ(◦γ) on extremal bounds

union of α’s

α◦Φ◦γ⊑

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 16 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Sequences

We start with an easy case: one dim., simple recursive structure (push/pop).

Syntax

<expr> ::=

| Cst <num> | ’n’ | ’f’
| <expr> ♢ <expr>

| Pop <expr> | Push <num> <expr>

| ...

<num> ::= c ∈ R ♢ ∈ {+,−,×}

∪{◦}

Seq: A simple operator language

Example

f (0) = 4, f (n) = 1/2 · f (n − 1) + 3

←→ Φ : f 7→ n 7→ ite(n = 0, 4, 1/2 · f (n − 1) + 3)

←→ Push 4
(
Cst(1/2)× (’f’+ Cst(3))

)

Semantics

J·K : Seq→ End(N→ R)

JCst cK(f) = n 7→ c

J’n’K(f) = n 7→ n

J’f’K(f) = f

Je1 ♢ e2K(f) = Je1K(f) ♢̇ Je2K(f)

JPopK(f) = n 7→ f (n + 1)

JPush cK(f) = n 7→ ite(n = 0, c , f (n − 1))

Pop

c

Push c

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 17 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Sequences

We start with an easy case: one dim., simple recursive structure (push/pop).

Syntax

<expr> ::=

| Cst <num> | ’n’ | ’f’
| <expr> ♢ <expr>

| Pop <expr> | Push <num> <expr>

| Shift <...> | Scale <...> | ...
<num> ::= c ∈ R ♢ ∈ {+,−,×}∪{◦}

Seq: A simple operator language

Example

f (0) = 4, f (n) = 1/2 · f (n − 1) + 3

←→ Φ : f 7→ n 7→ ite(n = 0, 4, 1/2 · f (n − 1) + 3)

←→ Push 4
(
Cst(1/2)× (’f’+ Cst(3))

)

Semantics

J·K : Seq→ End(N→ R)

JCst cK(f) = n 7→ c

J’n’K(f) = n 7→ n

J’f’K(f) = f

Je1 ♢ e2K(f) = Je1K(f) ♢̇ Je2K(f)

JPopK(f) = n 7→ f (n + 1)

JPush cK(f) = n 7→ ite(n = 0, c , f (n − 1))

Pop

c

Push c

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 17 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Warm-up: affine bounds

B =
{
n 7→ an + b

∣∣ a ∈ R+ ∪ {+∞}, b ∈ R+

}
∪ {⊤B}

For simpler presentation, here only ub, and positive coefficients (need lb for subtraction and multiplication by negatives).

Here, coordinate order is complete
(
a1n + b1 ≤̇ a2n + b2 ⇐⇒ (a1, b1) ⊑B (a2, b2)

)
(a1, b1) ⊑B (a2, b2) ⇐⇒ a1 ≤ a2 ∧ b1 ≤ b2, ⊥B = (0, 0) ⊤B ≈ (,+∞)⊔{

(ai , bi)
}

=
(
max
i

ai , max
i

bi
)
,

l{
(ai , bi)

}
=

(
min
i

ai , min
i

bi
)
,

For simplicity, define transfer functions B→ P(B), then extend to P(B)→ P(B).

Constants, addition, multiplication easily represented, e.g.
(a1n + b1) + (a2n + b2) =

(
a1 + a2

)
n +

(
b1 + b2

)
(a1n + b1)× (a2n + b2) =

(
a1a2∞︸ ︷︷ ︸
a1a2n2

+a1b2 + a2b1
)
n +

(
b1b2

)
JPopK♯

(
(a, b)

)
=
{
(a, b + a)

}
JPush cK♯

(
(a, b)

)
=

{{
(a, c)

}
if c ≥ b − a{

(a, b − a), (b − c, c)
}

if c < b − a

c

f (0) = b
f (−1) = b − a c

b − a

Convex problem for JPush cK♯(
n 7→ un + v

)
≥̇ JPush cK

(
n 7→ an + b

)
⇐⇒{

v ≥ c

∧ JPopK
(
n 7→ un + v

)
≥̇
(
n 7→ an + b)

⇐⇒{
v ≥ c

∧ ∀n ∈ N, u · (n + 1) + v ≥ an + b

⇐⇒
v ≥ c

∧ u ≥ a

∧ u + v ≥ b

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 18 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Warm-up: affine bounds

B =
{
n 7→ an + b

∣∣ a ∈ R+ ∪ {+∞}, b ∈ R+

}
∪ {⊤B}

For simpler presentation, here only ub, and positive coefficients (need lb for subtraction and multiplication by negatives).

Here, coordinate order is complete
(
a1n + b1 ≤̇ a2n + b2 ⇐⇒ (a1, b1) ⊑B (a2, b2)

)
(a1, b1) ⊑B (a2, b2) ⇐⇒ a1 ≤ a2 ∧ b1 ≤ b2, ⊥B = (0, 0) ⊤B ≈ (,+∞)⊔{

(ai , bi)
}

=
(
max
i

ai , max
i

bi
)
,

l{
(ai , bi)

}
=

(
min
i

ai , min
i

bi
)
,

For simplicity, define transfer functions B→ P(B), then extend to P(B)→ P(B).

Constants, addition, multiplication easily represented, e.g.
(a1n + b1) + (a2n + b2) =

(
a1 + a2

)
n +

(
b1 + b2

)
(a1n + b1)× (a2n + b2) =

(
a1a2∞︸ ︷︷ ︸
a1a2n2

+a1b2 + a2b1
)
n +

(
b1b2

)
JPopK♯

(
(a, b)

)
=
{
(a, b + a)

}
JPush cK♯

(
(a, b)

)
=

{{
(a, c)

}
if c ≥ b − a{

(a, b − a), (b − c, c)
}

if c < b − a

c

f (0) = b
f (−1) = b − a c

b − a

Convex problem for JPush cK♯(
n 7→ un + v

)
≥̇ JPush cK

(
n 7→ an + b

)
⇐⇒{

v ≥ c

∧ JPopK
(
n 7→ un + v

)
≥̇
(
n 7→ an + b)

⇐⇒{
v ≥ c

∧ ∀n ∈ N, u · (n + 1) + v ≥ an + b

⇐⇒
v ≥ c

∧ u ≥ a

∧ u + v ≥ b

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 18 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds

B =

{
n 7→

∑
k≤d

akn
k

∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Similar idea here: polynomials are closed by simple arithmetic operations (+, ×, ◦, ...),
and representations of these operations are easy to compute.

The coordinate-wise order becomes incomplete (e.g. 1 · n2 + 2 · n ≤̇ 2 · n2 + 1 · n),
but this is okay and we can still decide ≤̇ if necessary.

Pop and Push are a bit more complex, but this is manageable.

Pop
∑
k≤d

ak (n + 1)k =
∑
k≤d

(∑
j≤d

ak

(j
k

)
︸ ︷︷ ︸

pk

)
nk

Push x ??

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐={
p0 ≥ x

∧ ∀k ∈ J0, dK,
∑

j≤d pk
(j
k

)
≥ ak

➔ There is a nice trick, coming from works on type-based amortised cost analysis

[HoffmannPhd11]: Use the binomial basis instead of the monomial basis,

which has much simpler behaviour under shifts.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds

B =

{
n 7→

∑
k≤d

akn
k

∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Similar idea here: polynomials are closed by simple arithmetic operations (+, ×, ◦, ...),
and representations of these operations are easy to compute.

The coordinate-wise order becomes incomplete (e.g. 1 · n2 + 2 · n ≤̇ 2 · n2 + 1 · n),
but this is okay and we can still decide ≤̇ if necessary.

Pop and Push are a bit more complex, but this is manageable.

Pop
∑
k≤d

ak (n + 1)k =
∑
k≤d

(∑
j≤d

ak

(j
k

)
︸ ︷︷ ︸

pk

)
nk

Push x ??

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐={
p0 ≥ x

∧ ∀k ∈ J0, dK,
∑

j≤d pk
(j
k

)
≥ ak

➔ There is a nice trick, coming from works on type-based amortised cost analysis

[HoffmannPhd11]: Use the binomial basis instead of the monomial basis,

which has much simpler behaviour under shifts.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds

B =

{
n 7→

∑
k≤d

akn
k

∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Similar idea here: polynomials are closed by simple arithmetic operations (+, ×, ◦, ...),
and representations of these operations are easy to compute.

The coordinate-wise order becomes incomplete (e.g. 1 · n2 + 2 · n ≤̇ 2 · n2 + 1 · n),
but this is okay and we can still decide ≤̇ if necessary.

Pop and Push are a bit more complex, but this is manageable.

Pop
∑
k≤d

ak (n + 1)k =
∑
k≤d

(∑
j≤d

ak

(j
k

)
︸ ︷︷ ︸

pk

)
nk

Push x ??

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐={
p0 ≥ x

∧ ∀k ∈ J0, dK,
∑

j≤d pk
(j
k

)
≥ ak

➔ There is a nice trick, coming from works on type-based amortised cost analysis

[HoffmannPhd11]: Use the binomial basis instead of the monomial basis,

which has much simpler behaviour under shifts.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Binomial basis

B =

{
n 7→

∑
k≤d

ak

(
n

k

) ∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Instead of the basis 1, n, n2, n3, ... of polynomials, use the basis
(n
0

)
,
(n
1

)
,
(n
2

)
,
(n
3

)
, ...,

Examples:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= 1

2
n2 − 1

2
n,
(n
3

)
= 1

6
n3 − 1

2
n2 + 1

3
n,

We can convert between the two representation easily if needed
(e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).

Key identity:
(n + 1

k

)
=
(n
k

)
+
(n

k − 1

)
.

The problems for Pop and Push become much easier.

Pop
∑
k≤d

ak

(n + 1

k

)
=
∑
k≤d

(
ak + ak+1︸ ︷︷ ︸

pk

)(n
k

)
Push x ...



{
(a2, a1 − a2, x), (x + a1 − a0, a0 − x, x)

}
if x > a0 − a1 + a2{

(a2, a1 − a2, a0 − a1 + a2)
}

if x = a0 − a1 + a2{
(a2, a1 − a2, a0 − a1 + a2), (a2, a0 − x, x)

}
if x < a0 − a1 + a2

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐=
p0 ≥ x

∧ pd ≥ ad
∧ ∀k < d , pk + pk+1 ≥ ak

➔ Extends well to higher dimensions, with multivariate polynomials.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Binomial basis

B =

{
n 7→

∑
k≤d

ak

(
n

k

) ∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Instead of the basis 1, n, n2, n3, ... of polynomials, use the basis
(n
0

)
,
(n
1

)
,
(n
2

)
,
(n
3

)
, ...,

Examples:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= 1

2
n2 − 1

2
n,
(n
3

)
= 1

6
n3 − 1

2
n2 + 1

3
n,

We can convert between the two representation easily if needed
(e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).

Key identity:
(n + 1

k

)
=
(n
k

)
+
(n

k − 1

)
.

The problems for Pop and Push become much easier.

Pop
∑
k≤d

ak

(n + 1

k

)
=
∑
k≤d

(
ak + ak+1︸ ︷︷ ︸

pk

)(n
k

)
Push x e.g., for d = 2,

{
(p2, p1, p0)

}
=

{
(a2, a1 − a2, x), (x + a1 − a0, a0 − x, x)

}
if x > a0 − a1 + a2{

(a2, a1 − a2, a0 − a1 + a2)
}

if x = a0 − a1 + a2{
(a2, a1 − a2, a0 − a1 + a2), (a2, a0 − x, x)

}
if x < a0 − a1 + a2

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐=
p0 ≥ x

∧ pd ≥ ad
∧ ∀k < d , pk + pk+1 ≥ ak

➔ Extends well to higher dimensions, with multivariate polynomials.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Binomial basis

B =

{
n 7→

∑
k≤d

ak

(
n

k

) ∣∣∣∣∣ ak ∈ R+

}
∪
{
a0(+∞)∗

∣∣ a0 ∈ R+

}
∪ {⊤B}

Instead of the basis 1, n, n2, n3, ... of polynomials, use the basis
(n
0

)
,
(n
1

)
,
(n
2

)
,
(n
3

)
, ...,

Examples:
(n
0

)
= 1,

(n
1

)
= n,

(n
2

)
= 1

2
n2 − 1

2
n,
(n
3

)
= 1

6
n3 − 1

2
n2 + 1

3
n,

We can convert between the two representation easily if needed
(e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).

Key identity:
(n + 1

k

)
=
(n
k

)
+
(n

k − 1

)
.

The problems for Pop and Push become much easier.

Pop
∑
k≤d

ak

(n + 1

k

)
=
∑
k≤d

(
ak + ak+1︸ ︷︷ ︸

pk

)(n
k

)
Push x e.g., for d = 2,

{
(p2, p1, p0)

}
=

{
(a2, a1 − a2, x), (x + a1 − a0, a0 − x, x)

}
if x > a0 − a1 + a2{

(a2, a1 − a2, a0 − a1 + a2)
}

if x = a0 − a1 + a2{
(a2, a1 − a2, a0 − a1 + a2), (a2, a0 − x, x)

}
if x < a0 − a1 + a2

Convex problem for JPush xK♯(
n 7→

∑
pkn

k
)
≥̇ JPush xK

(
n 7→

∑
akn

k
)

⇐=
p0 ≥ x

∧ pd ≥ ad
∧ ∀k < d , pk + pk+1 ≥ ak

➔ Extends well to higher dimensions, with multivariate polynomials.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 0, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 0, 0)

(0, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 1, 0)

(0, 2, 0)

(1, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

(0, 2, 0)

(1, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

Fixed!

(0, 2, 0)

(1, 1, 0)

(2, 1, 0)

(0, 3, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

Fixed!

(1, 1, 0)

(3, 1, 0)

(0, 4, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

Fixed!

(1, 1, 0)

(4, 1, 0)
(0, 5, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Polynomial bounds – Example
Very simple example: Φ(f)(n) = ite(n = 0, 0, f (n − 1) + n). (fsol = (1, 1, 0))

n

f (n)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

11

12

Fixed!

(1, 1, 0)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Beyond polynomials – exponential polynomials
Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

β : R5
+ → B ⊆ (N→ R+)(

M, a, b, a′, b′) 7→ (
n 7→

[
v 7→ a× v + b

]([
v 7→ a′ × v + b′](n)(M)

))
Intended to be a classical “non-relational” value domain (for filters, floats,...):
attach a function bound on each variable, parametric in the value of a local loop counter.
Coordinate-wise ⊑, ⊔, addition, ...
Simple operations for scalar +/×, next (∼Push), projection, ...

Shift-friendly exponentials: Stirling numbers of the 2nd kind [Kahn&Hoffmann20].

Replace basis 1, 2n, 3n, ... by
{n
1

}
,
{n
2

}
,
{n
3

}
,
{n
4

}
, ...{n

k

}
∼n→∞

kn

k!

{n + 1

k

}
= k

{n
k

}
+
{ n

k − 1

}
Extends well to multivariate settings.

Going beyond — exponential polynomials.
Replace basis n 7→ bn · nk by n 7→

{n
b

}(n
k

)
JPopK♯ still works well, and JPush cK♯ can be synthesised as before.{n + 1

b

}(n + 1

k

)
= b

{n
b

}(n
k

)
+ b
{n
b

}(n

k − 1

)
+
{ n

b − 1

}(n
k

)
+
{ n

b − 1

}(n

k − 1

)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 20 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Beyond polynomials – exponential polynomials
Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

β : R5
+ → B ⊆ (N→ R+)(

M, a, b, a′, b′) 7→ (
n 7→

[
v 7→ a× v + b

]([
v 7→ a′ × v + b′](n)(M)

))
Intended to be a classical “non-relational” value domain (for filters, floats,...):
attach a function bound on each variable, parametric in the value of a local loop counter.
Coordinate-wise ⊑, ⊔, addition, ...
Simple operations for scalar +/×, next (∼Push), projection, ...

Shift-friendly exponentials: Stirling numbers of the 2nd kind [Kahn&Hoffmann20].

Replace basis 1, 2n, 3n, ... by
{n
1

}
,
{n
2

}
,
{n
3

}
,
{n
4

}
, ...{n

k

}
∼n→∞

kn

k!

{n + 1

k

}
= k

{n
k

}
+
{ n

k − 1

}
Extends well to multivariate settings.

Going beyond — exponential polynomials.
Replace basis n 7→ bn · nk by n 7→

{n
b

}(n
k

)
JPopK♯ still works well, and JPush cK♯ can be synthesised as before.{n + 1

b

}(n + 1

k

)
= b

{n
b

}(n
k

)
+ b
{n
b

}(n

k − 1

)
+
{ n

b − 1

}(n
k

)
+
{ n

b − 1

}(n

k − 1

)

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 20 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Beyond polynomials – exponential polynomials
Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

β : R5
+ → B ⊆ (N→ R+)(

M, a, b, a′, b′) 7→ (
n 7→

[
v 7→ a× v + b

]([
v 7→ a′ × v + b′](n)(M)

))
Intended to be a classical “non-relational” value domain (for filters, floats,...):
attach a function bound on each variable, parametric in the value of a local loop counter.
Coordinate-wise ⊑, ⊔, addition, ...
Simple operations for scalar +/×, next (∼Push), projection, ...

Shift-friendly exponentials: Stirling numbers of the 2nd kind [Kahn&Hoffmann20].

Replace basis 1, 2n, 3n, ... by
{n
1

}
,
{n
2

}
,
{n
3

}
,
{n
4

}
, ...{n

k

}
∼n→∞

kn

k!

{n + 1

k

}
= k

{n
k

}
+
{ n

k − 1

}
Extends well to multivariate settings.

Going beyond — exponential polynomials.
Replace basis n 7→ bn · nk by n 7→

{n
b

}(n
k

)
JPopK♯ still works well, and JPush cK♯ can be synthesised as before.{n + 1

b

}(n + 1

k

)
= b

{n
b

}(n
k

)
+ b
{n
b

}(n

k − 1

)
+
{ n

b − 1

}(n
k

)
+
{ n

b − 1

}(n

k − 1

)
Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 20 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Discussion: Transfer Function Synthesis, Widenings, ...
Partial conclusion

For such sequence domains (useful for loops, equations, recursive functions, streams, ...)

➔ Non-linearity is natural and reasonably easy to achieve.
➔ Embrace regularity of functions vs arbitrary relations.
➔ Important enabler: convexity properties of

{
b ∈ B

∣∣ ∧
n f (n) ≤ b(n)

}
(vs
{
ϕ ∈ C

∣∣ ∧
p ϕ(p)

}
? Could we actually reuse some of these ideas for relations?).

Widenings

We have not discussed widenings. They are crucial. Our idea is

Use stability ∇ + thresholds, parameter-wise (within B),
On P↑(B): bound the number of constraints, drop/join above max cardinality,
Perhaps default to “fixed constraints”? “local fixpoints”.

➔ Can we do better? Is this appropriate?

Discussion: Transfer function synthesis

Still, design of transfer functions for a new B is the main bottleneck in creation of such abstract
domains (more burdensome than other postfixpoint search methods, e.g. optimisation-based).

Transfer function synthesis may be the right tool.
We were able to generate several automatically via CAS + SMT, and more still in interactive loops.

➔ Can we streamline this synthesis process?

Extra precision: generate transfers for small combinations of basic constructs, Js1 ◦ s2 ◦ ...K♯ vs {Jsi K♯}.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 21 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Discussion: Transfer Function Synthesis, Widenings, ...
Partial conclusion

For such sequence domains (useful for loops, equations, recursive functions, streams, ...)

➔ Non-linearity is natural and reasonably easy to achieve.
➔ Embrace regularity of functions vs arbitrary relations.
➔ Important enabler: convexity properties of

{
b ∈ B

∣∣ ∧
n f (n) ≤ b(n)

}
(vs
{
ϕ ∈ C

∣∣ ∧
p ϕ(p)

}
? Could we actually reuse some of these ideas for relations?).

Widenings

We have not discussed widenings. They are crucial. Our idea is

Use stability ∇ + thresholds, parameter-wise (within B),
On P↑(B): bound the number of constraints, drop/join above max cardinality,
Perhaps default to “fixed constraints”? “local fixpoints”.

➔ Can we do better? Is this appropriate?

Discussion: Transfer function synthesis

Still, design of transfer functions for a new B is the main bottleneck in creation of such abstract
domains (more burdensome than other postfixpoint search methods, e.g. optimisation-based).

Transfer function synthesis may be the right tool.
We were able to generate several automatically via CAS + SMT, and more still in interactive loops.

➔ Can we streamline this synthesis process?

Extra precision: generate transfers for small combinations of basic constructs, Js1 ◦ s2 ◦ ...K♯ vs {Jsi K♯}.
Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 21 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Abstract Domains of Functions

Introducing more complex features:
Multiple variables, disjunctivity,
non-trivial recursive structure...

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 22 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Multivariate functions
When the boundaries form a vector space B =

⊕
k R · fk extended with top elements,

as often before, it is easy to move on from N→ R to Nd → R.
Do a (tensor) product, and do products of coordinate-wise orders (for parameters).

B⊗d :=
⊗
i<d

⊕
k

R · f (i)k =
⊕

k1,...,kd

R · f (1)k1
⊗ ...⊗ f

(d)
kd

Example

Monovariate polynomials R[n] in the monomial basis P(n) =
∑

k akn
k simply give rise to

multivariate polynomials R[x , y] = (R[n])⊗2 in the monomial basis P(x , y) =
∑

akx ,ky x
kx yky .

Transfer functions (J♢K♯, JCst cK♯, etc.) are easily extended.
We can similarly define (and compose) JPopkK

♯ and JPushk cK♯ on each dimension,

e.g., Pushy c : f (x , y , z)⇝ ite
(
y = 0, c, f (x , y − 1, z)

)
.

Example

For polynomials, 1 · (x + 1)2yz = (x2 + 2x + 1)yz = 1 · x2yz + 2 · xyz + 1 · yz. Similarly, in the

binomial basis,
(x+1

kx

)(y
ky

)(z
kz

)
=
(x
kx

)(y
ky

)(z
kz

)
+
(x
kx−1

)(y
ky

)(z
kz

)
, so more generally

JPopx K
♯
(∑

a(kx ,ky ,kz)

(x

kx

)(y

ky

)(z

kz

))
=

{∑(
a(kx,ky ,kz) + a(kx+1,ky ,kz)

)(x

kx

)(y

ky

)(z

kz

)}
.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 23 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

Piecewise function domains (closely related to BDT domains [Urban&Mine14])

Sets of B-bounds by C-cases, where C is a
constraint domains (e.g. polyhedra, etc.).

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
, s.t.

Fi ∈ P↑(B),
the ci ∈ C partition the input space D.

➔ Instead of one conjunction of bounds,
piecewise conjunction of bounds.

Key primitive: ability to merge cases, i.e.
“Compute best B-approximation of B-cases by C-parts.”

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

⊥♯ =


{0} (D1)

{0} (D2)

{0} (D3)

{0} (D4)

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

⊥♯ =


{0} (D1)

{0} (D2)

{0} (D3)

{0} (D4)

(Φ♯)(⊥♯) =


{0} (D1)

{0} (D2)

{1} (D3)

{1} (D4)

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

⊥♯ =


{0} (D1)

{0} (D2)

{0} (D3)

{0} (D4)

(Φ♯)(⊥♯) =


{0} (D1)

{0} (D2)

{1} (D3)

{1} (D4)

(Φ♯)(2)(⊥♯) = ?

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

(Φ♯)(⊥♯) =


{0} (D1)

{0} (D2)

{1} (D3)

{1} (D4)

(Φ♯)(2)(⊥♯) = ?

(Φ ◦ Φ♯)(⊥♯) =



0 (D1)

0 (D2){
2 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D3

1 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D2{
1 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D1

2 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D4

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

(Φ ◦ Φ♯)(⊥♯) =



0 (D1)

0 (D2){
2 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D3

1 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D2{
1 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D1

2 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D4

(Φ♯)(2)(⊥♯) =


{0} (D1)

{0} (D2)

{n − i} (D3)

{i} (D4)

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Piecewise functions — more complex control flows { Work in
Progress

Example

while (0<i&&i<n){

if(b)

i++;

else

i--;

}

Simple loop (from [AFloresPhd17])

Φ(f)(i , n, b) =


0 if i = 0 (D1)

0 if i ≥ n (D2)

1 + f (i + 1, n, b) if 0 < i < n ∧ b ≥ 1 (D3)

1 + f (i − 1, n, b) if 0 < i < n ∧ b = 0 (D4)

Corresponding cost equation

(Φ ◦ Φ♯)(⊥♯) =



0 (D1)

0 (D2){
2 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D3

1 if (i , n, b) ∈ D3 ∧ (i + 1, n, b) ∈ D2{
1 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D1

2 if (i , n, b) ∈ D4 ∧ (i − 1, n, b) ∈ D4

(Φ♯)(2)(⊥♯) =


{0} (D1)

{0} (D2)

{n − i} (D3)

{i} (D4)

↔ fsol (i , n, b) !

Domains of piecewise functions

P(B, C) ∋
{
(F1, c1), ..., (Fk , ck)

}
,

Fi ∈ P↑(B),
the ci ∈ C partition D.

➔ n⃗ ∈ γ(ci)⇒
∧

j f (n⃗) ≤ f ♯i,j (n⃗)

Key primitive:
“Compute best B-approximation

of B-cases by C-parts.”

➔ Refine at interfaces between
subdomains, and merge subcases.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 24 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Continuous systems: example of ODE { Work in
Progress

Abstract functions become particularly interesting in cases where we cannot (or do not want
to) compute input/output samples, e.g. for continuous systems, with a function f : R+ → R
defined as the solution of a differential equation. ➔ Towards B ∈ P(R+ → R)?

v : R+ → R, v(0) = v0, v̇ = −α · v2 − β · v + γ

Non-standard analysis with infinitesimal ϵ, within hyperreals ∗R?
Or more simply a family of Euler schemas.

Φ ∈ End
(∗R+ → I(∗R), ⊑̇I

)
:= f 7→ t 7→

{
[v0, v0] if t < ϵ

f (t − ϵ)− α · ϵ · f (t − ϵ) ·I f (t − ϵ)− β · ϵ · f (t − ϵ) + ϵ · γ if t ≥ ϵ

For f̂ : t 7→ [0,M], Φf̂ ⊑̇I f̂ whenever x0 ∈ [0,M], α, β, γ ≥ 0 and M ≥ γ/β.
➔ Can also be applied with time-dependent α(t), β(t), γ(t), which is typically not solvable.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

Example with α(t) ∈ [0, 2], β = 2, γ = 1, v0 = 0.2.

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 25 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences Abstract Domains of Functions

Thank you!

Questions?

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 26 / 26

Order theory framework of equations [SAS24]

Equations ↔ Operators Solutions ↔ Fixpoints Bounds ← Pre/Postfixp

Example

Search f : N2 → R such that

f (n, c) =


f (n − 1, 0) + n + 300 if n > 0 and c ≥ 100,

f (n − 1, c + 1) + n if n > 0 and c < 100,

c if n = 0,

:

Example

Search f : N2 → R such that f = Φf , i.e. f ∈ Fixp(Φ), where

Φ : (N2 → R)→ (N2 → R)

f 7→ (n, c) 7→


f (n − 1, 0) + n + 300 if n > 0 and c ≥ 100,

f (n − 1, c + 1) + n if n > 0 and c < 100,

c if n = 0.

For a complete lattice, order D → R pointwise, and extend to R := R ∪ {±∞}

Theorem

Let Φ : (D → R)→ (D → R) be a monotone equation.

If f ∈ Postfp(Φ), i.e. Φf ≤ f , then lfpΦ ≤ f .

If f ∈ Prefp(Φ), i.e. f ≤ Φf , then f ≤ gfpΦ.

Insight: cost equations are typically monotone for this pointwise order,
(and terminating ⇝ lfpΦ = gfpΦ).

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 1 / 1

	Introduction
	(Abstract) Lattices of Functions and Galois Connections between them
	Abstract Domains of Sequences: A simple way towards non-linearity
	Abstract Domains of Functions [1em] Introducing more complex features: [-2pt] Multiple variables, disjunctivity, [-2pt] non-trivial recursive structure... [-1.25em]
	
	Appendix

