Abstractions of Sequences, Functions and Operators

Louis Rustenholz^{1,3}, in collaboration with Pedro López-García^{2,3} and Manuel V. Hermenegildo^{1,3}

¹Universidad Politécnica de Madrid (UPM), Spain ²Spanish Council for Scientific Research (CSIC), Spain ³IMDEA Software Institute, Spain

> CSV, June 5th, 2025 Università Ca' Foscari, Venezia

Introduction	
00000	

Introduction

Louis Rustenholz et al. Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025

2 / 26

Introduction 00000	Abstract Lattices of Functions	Abstract Domains of Sequences	Abstract Domains of Functions	
Introduction				

- Infer information about mathematical functions given by a recursive definition,
 i.e. by an operator/equation.
- → Role of order theory and abstract interpretation.
 - Share some order theory facts, Galois connections, ... discovered along the way.
 - Present (domain specific?) abstract domains built using **functions as the basic object**.

Intuition

Idea to be explored

Functions $X \to Y$ may be simpler objects than arbitrary sets of points $\mathcal{P}(X \times Y)$ (relations).

Of course, not in general, but...

- Can be the case for families of functions we care to approximate
- → Exploit local regularity
- → Relate definition with that of simpler functions

→ ...

Analysis viewpoint

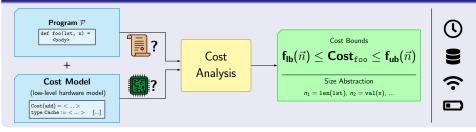
We are interested in numerical functions, constructed/defined recursively by an operator $\Phi \in ((X \to L) \to (X \to L))$, i.e. by an equation. Introduction 000000 Abstract Lattices of Functions

Abstract Domains of Sequences

Abstract Domains of Functions

Origin and Motivation: Cost Analysis

Cost Analysis: Bounds on Resource Consumption



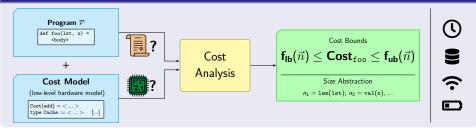
Introduction Abstract Lattices of Functions Abstract E

Abstract Domains of Sequences

Abstract Domains of Functions

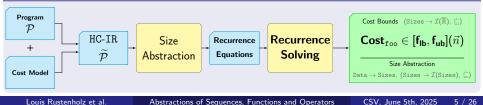
Origin and Motivation: Cost Analysis

Cost Analysis: Bounds on Resource Consumption



• Pipeline implemented in **Coo** (and other analysers).

Recurrence-based cost analysis



Introduction 0000●0	Abstract Lattices of Functions	Abstract Domains of Sequences	Abstract Domains of Functions
Intuition			

Analysis viewpoint

We are interested in **numerical functions**, **constructed**/defined recursively by an operator $\Phi \in ((X \rightarrow L) \rightarrow (X \rightarrow L))$, **i.e.** by an equation.

- Function defined recursively in a declarative language,
- Input/output of a basic block in an imperative language,
- Cost function obtained as the solution of a recurrence equation,
- Solution of a differential equation, ...

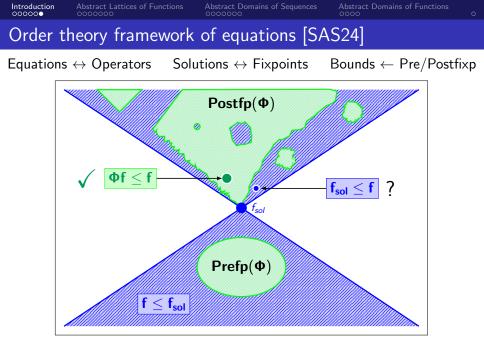
Introduction 0000●0	Abstract Lattices of Functions	Abstract Domains of Sequences	Abstract Domains of Functions
Intuition			

Analysis viewpoint

We are interested in **numerical functions**, **constructed**/defined recursively by an operator $\Phi \in ((X \rightarrow L) \rightarrow (X \rightarrow L))$, **i.e.** by an equation.

- Function defined recursively in a declarative language,
- Input/output of a basic block in an imperative language,
- Cost function obtained as the solution of a recurrence equation,
- Solution of a differential equation, ...

→ Can we build abstract lattices of functions, and abstract these operators/equations $(\Phi \rightsquigarrow \Phi^{\sharp})$ to produce bounds $f_{sol} \stackrel{.}{\sqsubseteq} \hat{f}$ by abstract Kleene iteration?



Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

CSV, June 5th, 2025 7 / 26

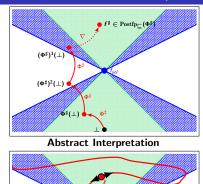
Abstract Lattices of Functions

Abstract Domains of Sequences

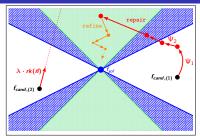
Abstract Domains of Functions

Equation solving as pre/postfixpoint search [SAS24]

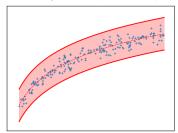
Model Space



Search on subvarieties: Templates, V-elim



Geometry-based expression Repair



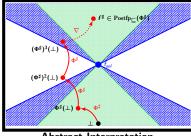
Constrained **Optimisation**, with *provability constraints*

Abstract Lattices of Functions

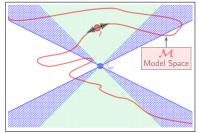
Abstract Domains of Sequences

Abstract Domains of Functions

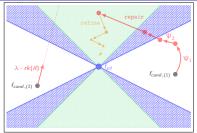
Equation solving as pre/postfixpoint search [SAS24]



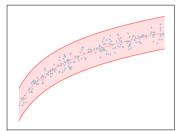
Abstract Interpretation



Search on subvarieties: Templates, ∀-elim



Geometry-based expression Repair



Constrained **Optimisation**, with *provability constraints*

(Abstract) Lattices of Functions and Galois Connections between them

CSV, June 5th, 2025 8 / 26

Abstract Lattices of Functions

Abstract Domains of Sequences

Abstract Domains of Functions

0

Lattices of Functions

Pointwise lattice structure

For X a set and (L, \leq, \lor, \land) a complete lattice, the set of functions $X \to L$ has a very natural lattice structure $(X \to L, \leq, \lor, \land)$, with

 $\begin{aligned} f &\leq g \iff \forall x \in X, \ f(x) \leq g(x), \\ f &\lor g \triangleq (x \mapsto f(x) \lor g(x)), \qquad & \bot \triangleq (x \mapsto \bot), \\ f &\land g \triangleq (x \mapsto f(x) \land g(x)), \qquad & \top \triangleq (x \mapsto \top). \end{aligned}$

Example (Numerical functions)

In $(\mathcal{D} \to \overline{\mathbb{R}}, \leq)$, join and meet are pointwise max/min. $\dot{\perp} = x \mapsto -\infty$.

Example (Set-valued functions)

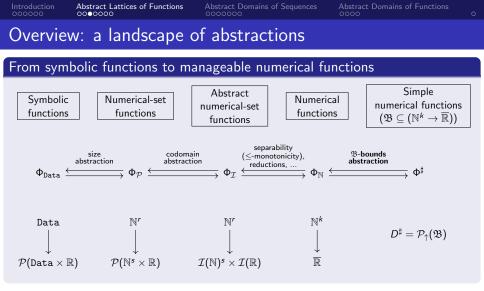
In $(\mathcal{D} \to \mathcal{I}(\mathbb{R}), \dot{\sqsubseteq}_{\mathcal{I}})$, join/meet are pointwise union/intersection.

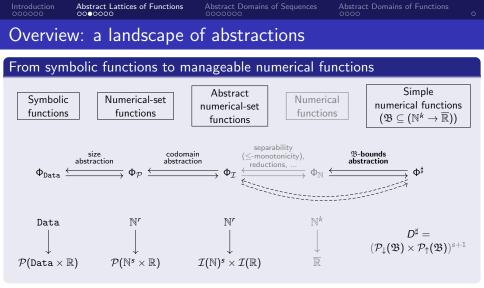
We are interested in objects which can be viewed as functions, constructed/defined as fixpoints of some operator $\Phi \in ((X \to L) \to (X \to L))$, which is monotone for such an order on functions (to apply Knaster-Tarski).

- Function defined recursively in a declarative language,
- Input/output of a basic block in an imperative language,
- Cost function obtained as the solution of a recurrence equation,
- Solution of a differential equation, ...

→ Can we abstract these lattices $\left(D \stackrel{\gamma}{\underset{\alpha}{\leftarrow}} D^{\sharp}\right)$ and these operators $\left(\Phi \rightsquigarrow \Phi^{\sharp}\right)$ to produce bounds $f_{sol} \stackrel{\cdot}{\sqsubseteq} \hat{f} \in \text{Postfp}(\Phi)$ by abstract Kleene iteration?

Louis Rustenholz et al.





Simplified picture: intervals for numerically non-monotone systems, lb+ub, systems $\Phi \in \operatorname{End}(\prod_{\tau} (\tau_{in} \to \tau_{out}))$ vs single equation $\Phi \in \operatorname{End}(\tau_{in} \to \tau_{out})$, ...

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

CSV, June 5th, 2025 10 / 26

Abstract Domains of Sequences

Constructing Galois connections in function space

Many ways to build connections on functions from connections on values.

Proposition (Codomain abstraction)

Let $(D, \leq) \xrightarrow{\gamma} (D^{\sharp}, \sqsubseteq)$ and X be a set. This lifts to $(X \to D, \dot{\leq}) \xrightarrow{\dot{\gamma}} (X \to D^{\sharp}, \sqsubseteq)$, with $\dot{\alpha}(f) = \alpha \circ f$ and $\dot{\gamma}(f^{\sharp}) = \gamma \circ f^{\sharp}$.

Constructing Galois connections in function space

Many ways to build connections on functions from connections on values.

Proposition (Codomain abstraction)

Let
$$(D, \leq) \xrightarrow{\gamma} (D^{\sharp}, \sqsubseteq)$$
 and X be a set. This lifts to $(X \to D, \dot{\leq}) \xrightarrow{\dot{\gamma}} (X \to D^{\sharp}, \dot{\sqsubseteq})$,
with $\dot{\alpha}(f) = \alpha \circ f$ and $\dot{\gamma}(f^{\sharp}) = \gamma \circ f^{\sharp}$.

Definition (Endomorphisms are monotone endofunctions)

Let (L, \sqsubseteq) be a partial order. End_{\sqsubseteq} $(L) := \{f : L \to L \mid \forall x \sqsubseteq y, f(x) \sqsubseteq f(y)\}.$

Proposition (End-lifting)

$$\begin{array}{c|c} \text{Let } (D, \leq) & \xleftarrow{\gamma} \\ (D^{\sharp}, \sqsubseteq). \text{ This lifts to a Galois connection} \\ (\text{End}_{\leq}(D), \dot{\leq}) & \xleftarrow{\tilde{\gamma}} \\ f & \mapsto \alpha \circ f \circ \gamma, \\ \gamma \circ f^{\sharp} \circ \alpha & \longleftrightarrow f^{\sharp}. \end{array} \qquad \begin{array}{c|c} D & \xrightarrow{f} \\ D & & \uparrow \\ \gamma^{\uparrow} & \downarrow^{\alpha} \\ D^{\sharp} \xrightarrow{f^{\sharp} = \vec{\alpha}(f)} \\ D^{\sharp} \end{array}$$

Corollary

This can be iterated to operators in $\operatorname{End}^2 \approx ((\cdot \rightarrow \cdot) \rightarrow (\cdot \rightarrow \cdot))$, and beyond.

Louis Rustenholz et al.

25 11 / 26

IntroductionAbstract Lattices of Functions
occodeAbstract Domains of SequencesAbstract Domains of Functions
occodeFrom mappings in value space to Galois connections in function spaceTheorem (Domain abstraction)Let $m: X \to A$ be an arbitrary mapping,
and (L, \sqsubseteq) be a complete lattice.
Then, there is a Galois connection
 $(X \to L, \doteq) \stackrel{\gamma}{\xrightarrow{\alpha}} (A \to L, \doteq)$

$$(X \to L, \stackrel{\scriptscriptstyle }{\sqsubseteq}) \xleftarrow[]{} (A \to L, \stackrel{\scriptscriptstyle }{\sqsubseteq})$$
$$f \longmapsto (a \mapsto \bigsqcup_{x \in m^{-1}(a)} f(x))$$
$$(x \mapsto f^{\sharp}(m(x))) \longleftarrow f^{\sharp}, \quad x \in m^{-1}(a)$$
which is an insertion for $m : X \twoheadrightarrow A$.
" $\alpha : f \mapsto \sqcup f \circ m^{-1}, \quad \gamma : f^{\sharp} \mapsto f^{\sharp} \circ m$

Remark: Codomain abstraction is classical. $(X \to D, \leq) \iff (X \to D^{\sharp}, \equiv)$

CSV. June 5th. 2025

12 / 26

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

Introduction 000000	Abstract Lattices of Functions	Abstract Dom 0000000	ains of Sequences	Abstract Domains	of Functions
From mappings in value space to Galois connections in function space					
Theorem (Domain abstraction)		× (
and (L, \sqsubseteq)	→ A be an arbitrary m be a complete lattice. re is a Galois connectior			m	A
(X		$f(x)\Big)$		•	n ⁻¹

" $\alpha : f \mapsto \sqcup f \circ m^{-1}, \quad \gamma : f^{\sharp} \mapsto f^{\sharp} \circ m$ "

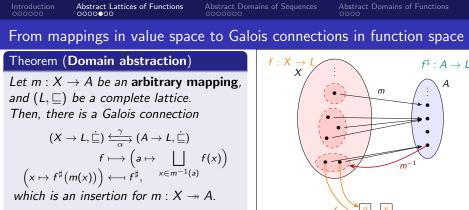
 $(x \mapsto f^{\sharp}(m(x))) \longleftrightarrow f^{\sharp}, \quad x \in m^{-1}(a)$ which is an insertion for $m: X \rightarrow A$.

Example (Size abstraction)

 $m: Data \rightarrow Sizes$

e.g. list-length ⊔ tree-nbnodes ⊔ int-value...

Remark: Codomain abstraction is classical. $(X \to D, \stackrel{:}{\leq}) \longleftrightarrow (X \to D^{\sharp}, \stackrel{:}{\Box})$



$$``\alpha: f \mapsto \sqcup f \circ m^{-1}, \quad \gamma: f^{\sharp} \mapsto f^{\sharp} \circ m "$$

Example (Size abstraction)

 $m: \mathtt{Data} \to \mathtt{Sizes}$ e.g. list-length \sqcup tree-nbnodes \sqcup int-value...

Remark: Codomain abstraction is classical. $(X \to D, \leq) \iff (X \to D^{\sharp}, \equiv)$ Introduction Abstract Lattices of Functions Abstract Domains of Sequences

Abstract Domains of Functions

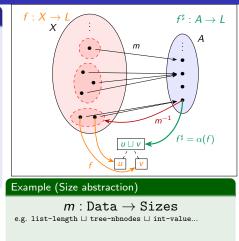
From mappings in value space to Galois connections in function space

Theorem (Domain abstraction)

Let $m : X \to A$ be an arbitrary mapping, and (L, \sqsubseteq) be a complete lattice. Then, there is a Galois connection

$$\begin{array}{c} (X \to L, \stackrel{-}{\sqsubseteq}) \xleftarrow{\gamma}{\alpha} (A \to L, \stackrel{-}{\sqsubseteq}) \\ f \longmapsto \left(a \mapsto \bigsqcup_{x \in m^{-1}(a)} f(x) \right) \\ \left(x \mapsto f^{\sharp}(m(x)) \right) \longleftarrow f^{\sharp}, \quad x \in m^{-1}(a) \\ \text{hich is an insertion for } m : X \to A. \end{array}$$

$$``\alpha: f \mapsto \sqcup f \circ m^{-1}, \quad \gamma: f^{\sharp} \mapsto f^{\sharp} \circ m"$$



Remark: Codomain abstraction is classical. $(X \to D, \leq) \iff (X \to D^{\sharp}, \equiv)$

Louis Rustenholz et al.

W

Abstractions of Sequences, Functions and Operators

CSV, June 5th, 2025

12 / 26

Introduction Abstract Lattices of Functions Abstract Domains of Sequences

Abstract Domains of Functions

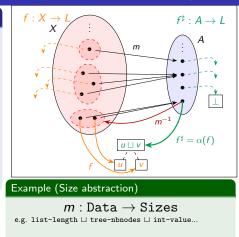
From mappings in value space to Galois connections in function space

Theorem (**Domain abstraction**)

Let $m : X \to A$ be an arbitrary mapping, and (L, \sqsubseteq) be a complete lattice. Then, there is a Galois connection

$$(X \to L, \stackrel{\square}{\sqsubseteq}) \xleftarrow{\gamma}{\alpha} (A \to L, \stackrel{\square}{\sqsubseteq})$$
$$f \longmapsto (a \mapsto \underset{x \in m^{-1}(a)}{\amalg} f(x))$$
$$(x \mapsto f^{\sharp}(m(x))) \longleftrightarrow f^{\sharp}, \quad x \in m^{-1}(a)$$
hich is an insertion for $m : X \twoheadrightarrow A.$

$$``\alpha: f \mapsto \sqcup f \circ m^{-1}, \quad \gamma: f^{\sharp} \mapsto f^{\sharp} \circ m "$$



Remark: Codomain abstraction is classical. $(X \to D, \leq) \iff (X \to D^{\sharp}, \sqsubseteq)$

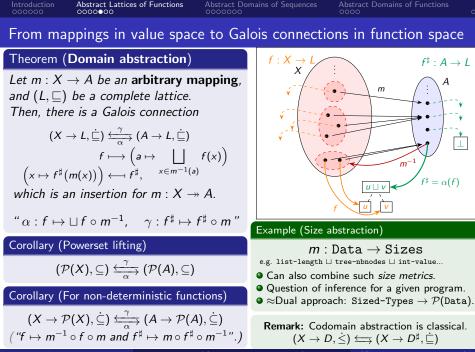
Louis Rustenholz et al.

W

Abstractions of Sequences, Functions and Operators

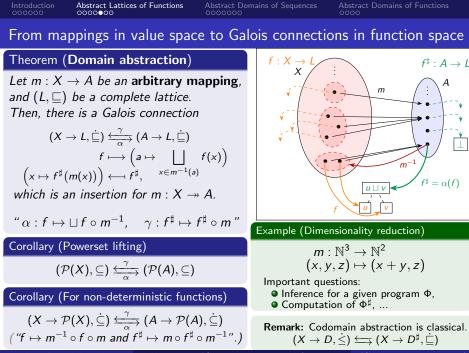
CSV, June 5th, 2025

12 / 26



Louis Rustenholz et al.

CSV, June 5th, 2025 12 / 26



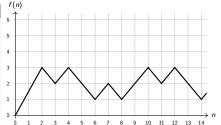
Louis Rustenholz et al.

CSV, June 5th, 2025 12 / 26

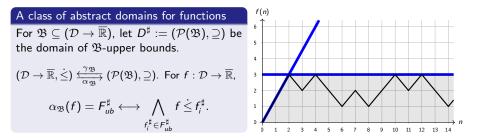
$\mathfrak{B} ext{-bounds}$ — abstracting functions with simpler functions

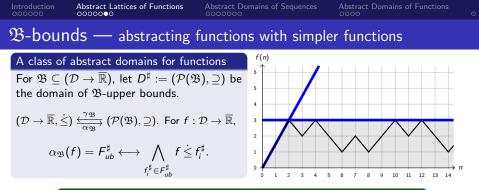
A class of abstract domains for functions
For
$$\mathfrak{B} \subseteq (\mathcal{D} \to \overline{\mathbb{R}})$$
, let $D^{\sharp} := (\mathcal{P}(\mathfrak{B}), \supseteq)$ be
the domain of \mathfrak{B} -upper bounds.
 $(\mathcal{D} \to \overline{\mathbb{R}}, \leq) \xrightarrow{\gamma_{\mathfrak{B}}} (\mathcal{P}(\mathfrak{B}), \supseteq)$. For $f : \mathcal{D} \to \overline{\mathbb{R}}$,

$$\alpha_{\mathfrak{B}}(f) = F_{ub}^{\sharp} \longleftrightarrow \bigwedge_{f_i^{\sharp} \in F_{ub}^{\sharp}} f \leq f_i^{\sharp}.$$



$\mathfrak{B} ext{-bounds}$ — abstracting functions with simpler functions





Examples

- Affine bounds. $\mathfrak{B} = \{n \mapsto an + b \mid a, b \in \mathbb{R}\}$ (one dim), $n \mapsto \vec{a} \cdot \vec{n} + b$ (multidim).
- Polynomial bounds (bounded degree). $n \mapsto \sum_{k \leq d} a_k n^k$ (monomial basis),
- $n \mapsto \sum a_k \binom{n}{k}$ (binomial basis), multidim versions, ...
- Poly-exp. $n \mapsto \sum a_{b,k} b^n n^k$, or $n \mapsto \sum a_{b,k} {n \choose k} {n+1 \choose k+1}$ (with Stirling numbers of 2^{nd} kind), ...
- Arithmetico-geometric sequences, Regular expressions on numbers, $\sum ab^n n^k \log(en + f)...$
- Extra features: initial exactness, piecewise behaviour (disjunctive versions), ...

Remark: functional version of a familiar concept (for relations) – constraint domains

 $\begin{array}{ll} \text{For } E \in \mathcal{P}(\mathbb{R}^{\texttt{Vars}}), & \alpha_{P}(E) = \texttt{Polyhedron} \leftrightarrow \left(\forall x \in E, \ \bigwedge_{i} \sum_{j} \alpha_{i,j} x_{j} \leq \beta_{i}\right), \\ \alpha_{B}(E) = \texttt{Box} \leftrightarrow \left(\forall x \in E, \ \bigwedge_{i} a_{i} \leq x_{i} \leq b_{i}\right), & \alpha_{Z}(E) = \texttt{Zone} \leftrightarrow \left(\forall x \in E, \ \bigwedge_{i,j} x_{i} - x_{j} \leq c_{i,j}\right), \ldots \end{array}$

Abstract Domains of Sequences

Abstract Domains of Functions

$\mathfrak{B} ext{-bounds}$ — abstracting functions with simpler functions

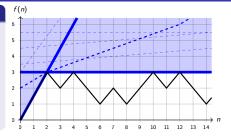
A class of abstract domains for functions For $\mathfrak{B} \subseteq (\mathcal{D} \to \overline{\mathbb{R}})$, let $D^{\sharp} := (\mathcal{P}(\mathfrak{B}), \supseteq)$ be the domain of \mathfrak{B} -upper bounds.

$$(\mathcal{D} o \overline{\mathbb{R}}, \dot{\leq}) \xrightarrow{\langle \mathfrak{V}_{\mathfrak{B}} \ } (\mathcal{P}(\mathfrak{B}), \supseteq).$$
 For $f: \mathcal{D} o \overline{\mathbb{R}},$
 $lpha_{\mathfrak{B}}(f) = F_{ub}^{\sharp} \longleftrightarrow \bigwedge_{f_{i}^{\sharp} \in F_{ub}^{\sharp}} f \stackrel{i}{\leq} f_{i}^{\sharp}.$

Galois connection – \mathfrak{B} -ubs

$$\begin{split} (\mathcal{D} \to \overline{\mathbb{R}}, \dot{\leq}) & \xleftarrow{\gamma_{\mathfrak{B}}}{\alpha_{\mathfrak{B}}} (\mathcal{P}(\mathfrak{B}), \supseteq) \\ f & \longmapsto \left\{ f_{ub}^{\sharp} \in \mathfrak{B} \mid f \leq f_{ub}^{\sharp} \right\} \\ \left(\vec{n} \mapsto \min_{f_{ub}^{\sharp} \in \mathcal{F}_{ub}^{\sharp}} f_{ub}^{\sharp}(\vec{n}) \right) & \longleftrightarrow \mathcal{F}_{ub}^{\sharp} \end{split}$$

In practice, we replace $(\mathcal{P}(\mathfrak{B}), \supseteq, \cap, \cup)$ by a more computable representation $(\mathcal{P}_{\uparrow, \operatorname{fin}}(\mathfrak{B}), \sqsubseteq^{\sharp}, \sqcup^{\sharp}, \sqcap^{\sharp})$, with $A \sqsubseteq^{\sharp} B$ a sound approximation of $\uparrow A \supseteq \uparrow B$.

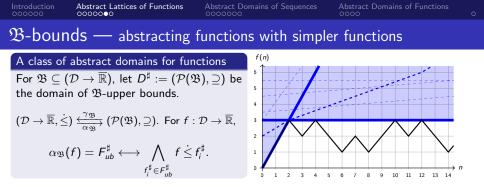


Remarks

- We can restrict to up-closed sets $\mathcal{P}_{\uparrow}(\mathfrak{B}) := \left\{ F \subseteq \mathfrak{B} \ \middle| \ \forall f \in F, \forall g \in \mathfrak{B}, \ f \leq g \Rightarrow g \in F \right\}.$
- Up-closure $(\uparrow) = \alpha_{\mathfrak{B}} \gamma_{\mathfrak{B}} : \mathcal{P}(\mathfrak{B}) \to \mathcal{P}_{\uparrow}(\mathfrak{B}).$
- Search for a finite number of generators
 ↑{f₁[#],...,f_k[#]} = α_B(f),
 (or at least an overapproximation of α_B(f)).
- → Add normalise and widening operators to keep the representation bounded.

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 13 / 26



With intervals - Galois connection with \mathfrak{B} -bounds: "flowpipes"

$$\begin{aligned} & \left(\mathcal{D} \to \mathcal{I}(\mathbb{R}), \stackrel{.}{\sqsubseteq}_{\mathcal{I}}\right) \xleftarrow{\gamma_{\mathfrak{B}}}{\xleftarrow{\alpha_{\mathfrak{B}}}} \left(\mathcal{P}(\mathfrak{B}), \supseteq\right) \times \left(\mathcal{P}(\mathfrak{B}), \supseteq\right) \\ & \left(\vec{n} \mapsto \left[\max_{f_{lb}^{\sharp} \in \mathcal{F}_{lb}^{\sharp}} f_{lb}^{\sharp}(\vec{n}), \min_{f_{ub}^{\sharp} \in \mathcal{F}_{ub}^{\sharp}} f_{ub}^{\sharp}(\vec{n})\right]\right) \longleftrightarrow \left(\mathcal{F}_{lb}^{\sharp}, \mathcal{F}_{ub}^{\sharp}\right) \\ & \left(f_{lb}, f_{ub}\right) \longmapsto \left(\begin{array}{c} \left\{f_{lb}^{\sharp} \in \mathfrak{B} \mid \forall \vec{n} \in \mathcal{D}, f_{lb}^{\sharp}(\vec{n}) \leq f_{lb}(\vec{n})\right\}, \\ \left\{f_{ub}^{\sharp} \in \mathfrak{B} \mid \forall \vec{n} \in \mathcal{D}, f_{ub}^{\sharp}(\vec{n}) \geq f_{ub}(\vec{n})\right\}\end{array}\right) \end{aligned}$$

Abstract Domains of Sequences

Abstract Domains of Functions

$\mathfrak{B} ext{-bounds}$ — abstracting functions with simpler functions

A class of abstract domains for functions For $\mathfrak{B} \subseteq (\mathcal{D} \to \overline{\mathbb{R}})$, let $D^{\sharp} := (\mathcal{P}(\mathfrak{B}), \supseteq)$ be the domain of \mathfrak{B} -upper bounds.

$$(\mathcal{D} o \overline{\mathbb{R}}, \dot{\leq}) \xrightarrow[]{rac{\gamma_{\mathfrak{B}}}{\alpha_{\mathfrak{B}}}} (\mathcal{P}(\mathfrak{B}), \supseteq).$$
 For $f : \mathcal{D} o \overline{\mathbb{R}},$
 $lpha_{\mathfrak{B}}(f) = F_{ub}^{\sharp} \longleftrightarrow \bigwedge f \stackrel{i}{\leq} f_i^{\sharp}.$

 $f : \stackrel{\sharp}{\leftarrow} F \stackrel{\sharp}{\to} F$

Proposition (convexity of constraint set)

When \mathfrak{B} is convex, all $\alpha(f)$ are convex (in function space).

Example

Most of the templates \mathfrak{B} discussed before are convex, e.g.

$$\begin{split} \lambda \cdot \left(n \mapsto \sum a_k n^k \right) + (1 - \lambda) \cdot \left(n \mapsto \sum b_k n^k \right) \\ &= \left(n \mapsto \sum \left(\lambda a_k + (1 - \lambda) b_k \right) n^k \right). \end{split}$$

 \rightarrow This reduces the problem of finding a minimal set of extremal bounds (e.g. for transfer function synthesis) to finding generators of a convex set.

To make the problem tractable in practice, we often approximate the problem $\Phi(\gamma(f^{\sharp})) \leq g^{\sharp}$, and **work in parameter space**, using an order that is an incomplete abstraction of \leq , e.g. $\left((n \mapsto \sum a_k n^k) \sqsubseteq^{\sharp} (n \mapsto \sum b_k n^k)\right) \stackrel{\Delta}{\Longrightarrow} (\forall k, a_k \leq b_k), \quad (\text{despite } n^2 - 1 \geq_{\mathbb{N}} 0).$

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

CSV, June 5th, 2025 13 / 26

\mathfrak{B} -bounds: discussion

We have discussed Galois connections, and mentioned that the domain can support non-linear bounds.

Let's make this concrete, with fully-fledged abstract domains:

- add a language, (we will present an operator language)
- design transfer functions,
- showcase abstract iteration.

→ Let's build some \mathfrak{B} -bounds domains!

Other applications of \mathfrak{B} -bound domains, beyond abstract iteration:

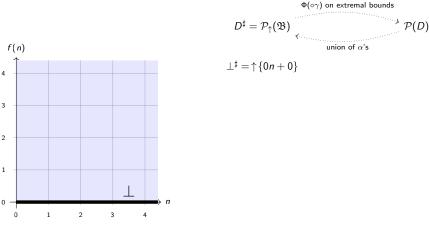
- Simplify analysis output for users: $f \leq g_{\text{precise}} \rightsquigarrow \bigwedge_i f \leq g_{i,\text{readable}}$,
- Help decide inequality of functions: $f \leq^{(?)} g$,

Abstract Domains of Sequences: A simple way towards non-linearity

Abstract iteration – what we want to get

Equation $\Phi(f) = \operatorname{ite}(n > 0, f(f(n-1)) + 1, 0), \ D = \mathbb{N} \to \mathbb{N}_{\infty}, \ \mathfrak{B} = \operatorname{Affines}.$

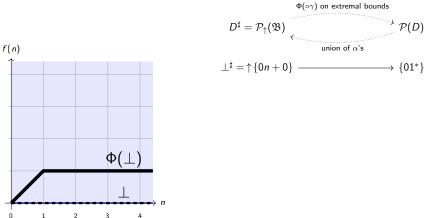
 \rightarrow We deal with extremal bounds separately.



Abstract iteration – what we want to get

Equation $\Phi(f) = \operatorname{ite}(n > 0, f(f(n-1)) + 1, 0), \ D = \mathbb{N} \to \mathbb{N}_{\infty}, \ \mathfrak{B} = \operatorname{Affines}.$

 \rightarrow We deal with extremal bounds separately.



3

2

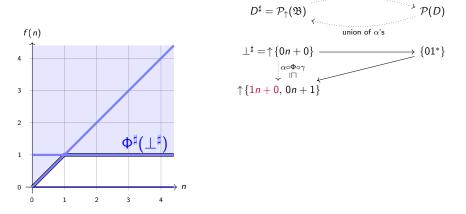
1

 $\Phi(\circ\gamma)$ on extremal bounds

Abstract iteration – what we want to get

Equation $\Phi(f) = \operatorname{ite}(n > 0, f(f(n-1)) + 1, 0), \ D = \mathbb{N} \to \mathbb{N}_{\infty}, \ \mathfrak{B} = \operatorname{Affines}.$

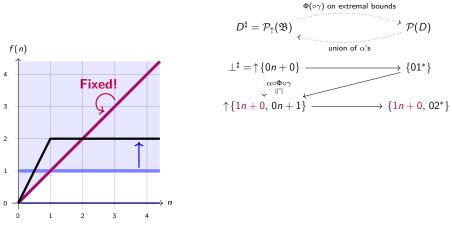
 \rightarrow We deal with extremal bounds separately.

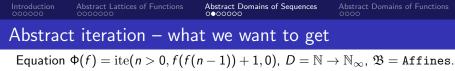


Abstract iteration – what we want to get

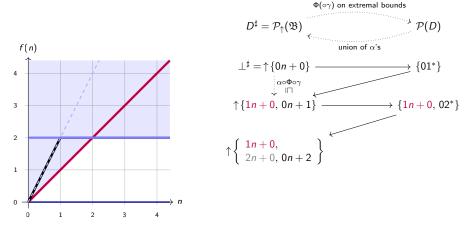
Equation $\Phi(f) = \operatorname{ite}(n > 0, f(f(n-1)) + 1, 0), \ D = \mathbb{N} \to \mathbb{N}_{\infty}, \ \mathfrak{B} = \operatorname{Affines}.$

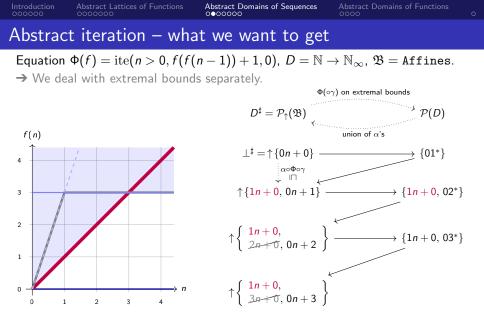
 \rightarrow We deal with extremal bounds separately.

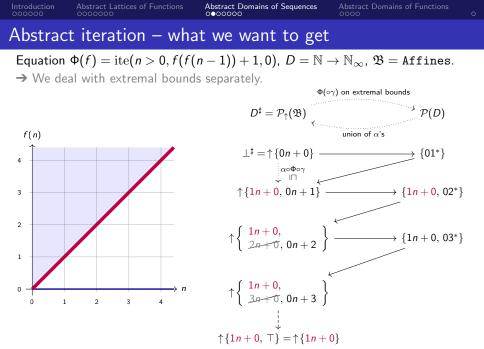




→ We deal with extremal bounds separately.







Abstractions of Sequences, Functions and Operators CSV,

CSV, June 5th, 2025 16 / 26

Sequences

We start with an easy case: one dim., simple recursive structure (push/pop).

Syntax
<expr> ::=</expr>
Cst <num> 'n' 'f'</num>
$ $ <expr> \Diamond <expr></expr></expr>
Pop <expr> Push <num> <expr></expr></num></expr>
$\verb+num+::= c \in \overline{\mathbb{R}} \qquad \diamondsuit \in \{+,-,\times\}$

Seq: A simple operator language

Example

$$\begin{split} f(0) &= 4, \ f(n) = 1/2 \cdot f(n-1) + 3 \\ &\longleftrightarrow \Phi : f \mapsto n \mapsto \text{ite}(n = 0, 4, 1/2 \cdot f(n-1) + 3) \\ &\longleftrightarrow \text{Push 4} \left(\text{Cst}(1/2) \times (\texttt{'f'} + \text{Cst}(3)) \right) \end{split}$$

Semantics

```
\llbracket \cdot \rrbracket : \operatorname{Seq} \to \operatorname{End}(\mathbb{N} \to \overline{\mathbb{R}})\llbracket \operatorname{Cst} c \rrbracket(f) = n \mapsto c\llbracket 'n' \rrbracket(f) = n \mapsto n\llbracket 'f' \rrbracket(f) = f\llbracket e_1 \diamondsuit e_2 \rrbracket(f) = \llbracket e_1 \rrbracket(f) \mathrel{\dot{\Diamond}} \llbracket e_2 \rrbracket(f)
```

```
\llbracket \texttt{Pop} \rrbracket(f) = n \mapsto f(n+1)
\llbracket \texttt{Push } c \rrbracket(f) = n \mapsto \text{ite}(n = 0, c, f(n-1))
```


Sequences

We start with an easy case: one dim., simple recursive structure (push/pop).

Syntax
<expr> ::=</expr>
Cst <num> 'n' 'f'</num>
$ $ <expr> \Diamond <expr></expr></expr>
Pop <expr> Push <num> <expr></expr></num></expr>
Shift <> Scale <>
$\operatorname{snum} ::= c \in \overline{\mathbb{R}} \qquad \Diamond \in \{+,-,\times\} \cup \{\circ\}$

Seq: A simple operator language

Example

$$f(0) = 4, f(n) = 1/2 \cdot f(n-1) + 3$$

$$\longleftrightarrow \Phi : f \mapsto n \mapsto \text{ite}(n = 0, 4, 1/2 \cdot f(n-1) + 3)$$

$$\longleftrightarrow \text{Push 4} (\text{Cst}(1/2) \times ('f' + \text{Cst}(3)))$$

Semantics

```
\llbracket \cdot \rrbracket : \operatorname{Seq} \to \operatorname{End}(\mathbb{N} \to \overline{\mathbb{R}})\llbracket \operatorname{Cst} c \rrbracket(f) = n \mapsto c\llbracket 'n' \rrbracket(f) = n \mapsto n\llbracket 'f' \rrbracket(f) = f\llbracket e_1 \diamondsuit e_2 \rrbracket(f) = \llbracket e_1 \rrbracket(f) \grave{\diamondsuit} \llbracket e_2 \rrbracket(f)
```

$$\llbracket \texttt{Pop} \rrbracket(f) = n \mapsto f(n+1)$$

 $\llbracket \texttt{Push } c \rrbracket(f) = n \mapsto \text{ite}(n = 0, c, f(n-1))$

0

Warm-up: affine bounds

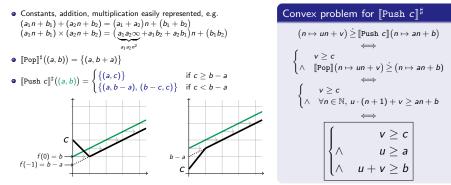
$\mathfrak{B} = \left\{ n \mapsto an + b \mid a \in \mathbb{R}_+ \cup \{+\infty\}, \ b \in \mathbb{R}_+ \right\} \cup \{\top_{\mathfrak{B}}\}$

For simpler presentation, here only ub, and positive coefficients (need lb for subtraction and multiplication by negatives).

Here, coordinate order is complete $(a_1n + b_1 \leq a_2n + b_2 \iff (a_1, b_1) \sqsubseteq_{\mathfrak{B}} (a_2, b_2))$

 $\begin{array}{l} (a_1, b_1) \sqsubseteq_{\mathfrak{B}} (a_2, b_2) \iff a_1 \leq a_2 \wedge b_1 \leq b_2, \qquad \bot_{\mathfrak{B}} = (0, 0) \qquad \top_{\mathfrak{B}} \approx (-, +\infty) \\ & \bigsqcup \{ (a_i, b_i) \} = \big(\max_i a_i, \max_i b_i \big), \qquad \bigcap \{ (a_i, b_i) \} = \big(\min_i a_i, \min_i b_i \big), \end{array}$

For simplicity, define transfer functions $\mathfrak{B} \to \mathcal{P}(\mathfrak{B})$, then extend to $\mathcal{P}(\mathfrak{B}) \to \mathcal{P}(\mathfrak{B})$.



0

Warm-up: affine bounds

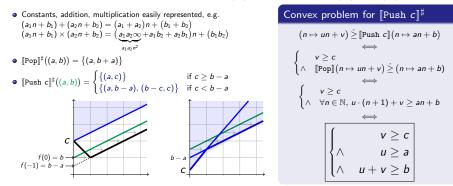
$\mathfrak{B} = \left\{ n \mapsto an + b \mid a \in \mathbb{R}_+ \cup \{+\infty\}, \ b \in \mathbb{R}_+ \right\} \cup \{\top_{\mathfrak{B}}\}$

For simpler presentation, here only ub, and positive coefficients (need lb for subtraction and multiplication by negatives).

Here, coordinate order is complete $(a_1n + b_1 \leq a_2n + b_2 \iff (a_1, b_1) \sqsubseteq_{\mathfrak{B}} (a_2, b_2))$

 $\begin{array}{l} (a_1, b_1) \sqsubseteq_{\mathfrak{B}} (a_2, b_2) \iff a_1 \leq a_2 \wedge b_1 \leq b_2, \qquad \bot_{\mathfrak{B}} = (0, 0) \qquad \top_{\mathfrak{B}} \approx (-, +\infty) \\ \\ \bigsqcup \{ (a_i, b_i) \} = (\max_{i} a_i, \max_{i} b_i), \qquad \bigcap \{ (a_i, b_i) \} = (\min_{i} a_i, \min_{i} b_i), \end{array}$

For simplicity, define transfer functions $\mathfrak{B} \to \mathcal{P}(\mathfrak{B})$, then extend to $\mathcal{P}(\mathfrak{B}) \to \mathcal{P}(\mathfrak{B})$.



Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

Polynomial bounds

$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k n^k \ \middle| \ a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \ \middle| \ a_0 \in \mathbb{R}_+ \right\} \cup \{\top_{\mathfrak{B}}\}$$

- Similar idea here: polynomials are closed by simple arithmetic operations $(+, \times, \circ, ...)$, and representations of these operations are easy to compute.
- The coordinate-wise order becomes incomplete (e.g. 1 · n² + 2 · n ≤ 2 · n² + 1 · n), but this is okay and we can still decide ≤ if necessary.

Polynomial bounds

$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k n^k \ \middle| \ a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \ \middle| \ a_0 \in \mathbb{R}_+ \right\} \cup \{\top_{\mathfrak{B}}\}$$

- Similar idea here: polynomials are closed by simple arithmetic operations (+, ×, o, ...), and representations of these operations are easy to compute.
- The coordinate-wise order becomes incomplete (e.g. $1 \cdot n^2 + 2 \cdot n \leq 2 \cdot n^2 + 1 \cdot n$), but this is okay and we can still decide \leq if necessary.
- Pop and Push are a bit more complex, but this is manageable.

Pop
$$\sum_{k \leq d} a_k (n+1)^k = \sum_{k \leq d} \left(\underbrace{\sum_{j \leq d} a_k {j \choose k}}_{P_k} \right) n^k$$

Push x ??

Convex problem for
$$\llbracket \text{Push } x \rrbracket^{\sharp}$$

 $\left(n \mapsto \sum p_k n^k\right) \ge \llbracket \text{Push } x \rrbracket \left(n \mapsto \sum a_k n^k\right)$
 \Leftarrow
 $\left\{\begin{array}{c}
p_0 \ge x \\
\wedge \quad \forall k \in \llbracket 0, d \rrbracket, \sum_{j \le d} p_k \binom{j}{k} \ge a_k
\end{smallmatrix}\right.$

Polynomial bounds

$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k n^k \ \middle| \ a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \ \middle| \ a_0 \in \mathbb{R}_+ \right\} \cup \{\top_{\mathfrak{B}}\}$$

- Similar idea here: polynomials are closed by simple arithmetic operations (+, ×, o, ...), and representations of these operations are easy to compute.
- The coordinate-wise order becomes incomplete (e.g. $1 \cdot n^2 + 2 \cdot n \leq 2 \cdot n^2 + 1 \cdot n$), but this is okay and we can still decide \leq if necessary.
- Pop and Push are a bit more complex, but this is manageable.

Pop
$$\sum_{k \leq d} a_k (n+1)^k = \sum_{k \leq d} \left(\sum_{j \leq d} a_k {j \choose k} \right) n^k$$
Push x ??
$$Convex problem for [[Push x]]^{\sharp}$$

$$(n \mapsto \sum p_k n^k) \geq [[Push x] (n \mapsto \sum a_k n^k)$$

$$\leftarrow$$

$$\begin{cases}
p_0 \geq x \\
\wedge \quad \forall k \in [[0, d]], \sum_{j \leq d} p_k {k \choose j} \geq a_k
\end{cases}$$

→ There is a nice trick, coming from works on type-based amortised cost analysis [HoffmannPhd11]: Use the binomial basis instead of the monomial basis, which has much simpler behaviour under shifts.

Polynomial bounds – Binomial basis

$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k \binom{n}{k} \mid a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \mid a_0 \in \mathbb{R}_+ \right\} \cup \{ \top_{\mathfrak{B}} \}$$

- Instead of the basis 1, *n*, n^2 , n^3 , ... of polynomials, use the basis $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, $\binom{n}{3}$, ..., Examples: $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{1}{2}n^2 \frac{1}{2}n$, $\binom{n}{3} = \frac{1}{6}n^3 \frac{1}{2}n^2 + \frac{1}{3}n$,
- We can convert between the two representation easily if needed (e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).
- Key identity: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
- The problems for Pop and Push become much easier.

Pop
$$\sum_{k \leq d} a_k \binom{n+1}{k} = \sum_{k \leq d} \left(\frac{a_k + a_{k+1}}{p_k} \right) \binom{n}{k}$$

Push x .

Convex problem for $\llbracket Push x \rrbracket^{\sharp}$	
$\Bigl(n\mapsto \sum p_k n^k\Bigr) \doteq \llbracket ext{Push } x rbracket \Bigl(n\mapsto \sum a_k n^k\Bigr)$	
\Leftarrow	
$\int p_0 \ge x$	
$\left\{egin{array}{c} p_0 \geq x \ & \ & \ & \ & \ & \ & \ & \ & \ & \$	
$(\land \forall k < d, p_k + p_{k+1} \ge a_k)$	

Polynomial bounds – Binomial basis

$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k \binom{n}{k} \mid a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \mid a_0 \in \mathbb{R}_+ \right\} \cup \{ \top_{\mathfrak{B}} \}$$

- Instead of the basis 1, *n*, n^2 , n^3 , ... of polynomials, use the basis $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, $\binom{n}{3}$, ..., Examples: $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{1}{2}n^2 \frac{1}{2}n$, $\binom{n}{3} = \frac{1}{6}n^3 \frac{1}{2}n^2 + \frac{1}{3}n$,
- We can convert between the two representation easily if needed (e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).
- Key identity: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
- The problems for Pop and Push become much easier.

$$\begin{array}{ll} \text{Pop} & \sum_{k \leq d} a_k \binom{n+1}{k} = \sum_{k \leq d} \left(\underbrace{a_k + a_{k+1}}_{p_k} \right) \binom{n}{k} \\ \text{Push } x & \text{e.g., for } d = 2, \ \left\{ (p_2, p_1, p_0) \right\} = \\ & \left\{ \begin{cases} (a_2, a_1 - a_2, x), \ (x + a_1 - a_0, a_0 - x, x) \} \\ (a_2, a_1 - a_2, a_0 - a_1 + a_2) \end{cases} & \text{if } x > a_0 - a_1 + a_2 \\ \left\{ (a_2, a_1 - a_2, a_0 - a_1 + a_2), \ (a_2, a_0 - a_1 + a_2) \end{cases} \right\} & \text{if } x < a_0 - a_1 + a_2 \\ & \text{if } x < a_0 - a_1 + a_2 \end{cases} \\ \begin{array}{c} \text{for } x < a_0 - a_1 + a_2 \\ (a_2, a_1 - a_2, a_0 - a_1 + a_2), \ (a_2, a_0 - a_1 + a_2) \end{array} \\ \end{array} \\ \begin{array}{c} \text{Convex problem for } \llbracket \text{Push } x \rrbracket \binom{n}{k} \ge \llbracket \text{Push } x \rrbracket \binom{n}{k} \xrightarrow{k} \binom{n}{k} \\ & \left\{ n \mapsto \sum p_k n^k \right\} \\ & \left\{ n \mapsto \sum p_k n^k \xrightarrow{k} \binom{n}{k} \xrightarrow{k} \underset{k}{k} \xrightarrow{k} \binom{n}{k} \xrightarrow{k} \binom{n}{k} \xrightarrow{k} \underset{k}{k} \xrightarrow{k$$

Polynomial bounds – Binomial basis

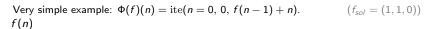
$$\mathfrak{B} = \left\{ n \mapsto \sum_{k \leq d} a_k \binom{n}{k} \middle| a_k \in \mathbb{R}_+ \right\} \cup \left\{ a_0 (+\infty)^* \middle| a_0 \in \mathbb{R}_+ \right\} \cup \{ \top_{\mathfrak{B}} \}$$

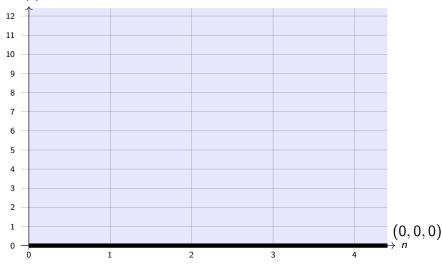
- Instead of the basis 1, *n*, n^2 , n^3 , ... of polynomials, use the basis $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, $\binom{n}{3}$, ..., Examples: $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{1}{2}n^2 \frac{1}{2}n$, $\binom{n}{3} = \frac{1}{6}n^3 \frac{1}{2}n^2 + \frac{1}{3}n$,
- We can convert between the two representation easily if needed (e.g. multiplication, composition, rescaling, etc., can be easier in monomial basis).
- Key identity: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
- The problems for Pop and Push become much easier.

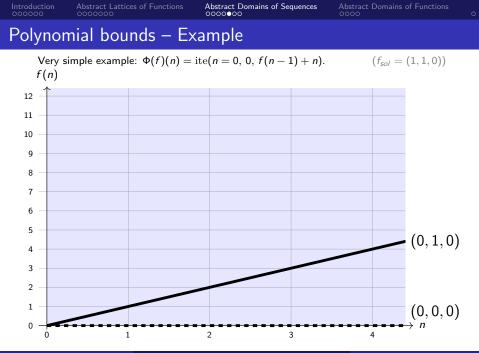
$$\begin{array}{ll} \text{Pop} & \sum_{k \leq d} a_k \binom{n+1}{k} = \sum_{k \leq d} \left(\underbrace{a_k + a_{k+1}}{p_k} \right) \binom{n}{k} \\ \text{Push } x & \text{e.g., for } d = 2, \ \left\{ (p_2, p_1, p_0) \right\} = \\ & \left\{ \begin{cases} (a_2, a_1 - a_2, x), \ (x + a_1 - a_0, a_0 - x, x) \\ (a_2, a_1 - a_2, a_0 - a_1 + a_2) \end{cases} & \underset{f \times > a_0 - a_1 + a_2}{\text{if } x > a_0 - a_1 + a_2} \\ \left\{ (a_2, a_1 - a_2, a_0 - a_1 + a_2), \ (a_2, a_0 - a_1 + a_2), \ (a_2, a_0 - a_1 + a_2) \end{cases} & \underset{f \times < a_0 - a_1 + a_2}{\text{if } x < a_0 - a_1 + a_2} \end{array} \right\}$$

 \rightarrow Extends well to higher dimensions, with multivariate polynomials.

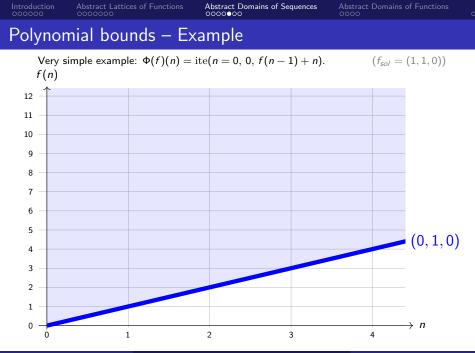
Polynomial bounds – Example

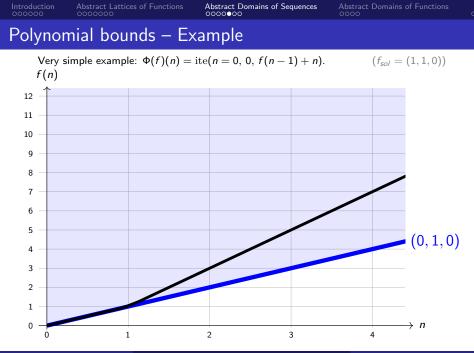






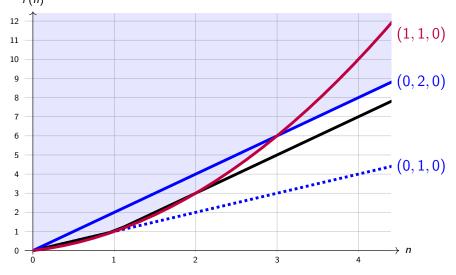
Abstractions of Sequences, Functions and Operators CSV, June 5th, 2025 19 / 26





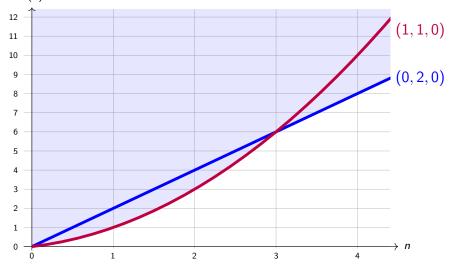
Polynomial bounds - Example

Very simple example:
$$\Phi(f)(n) = ite(n = 0, 0, f(n - 1) + n).$$
 $(f_{sol} = (1, 1, 0))$



Polynomial bounds – Example

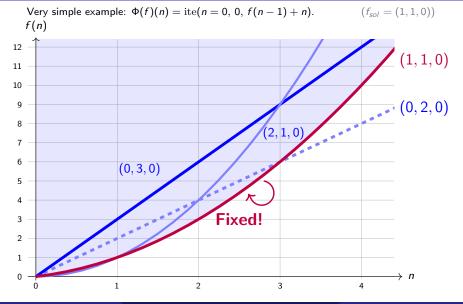
Very simple example:
$$\Phi(f)(n) = ite(n = 0, 0, f(n - 1) + n).$$
 $(f_{sol} = (1, 1, 0))$
 $f(n)$



Abstract Domains of Sequences

Abstract Domains of Functions

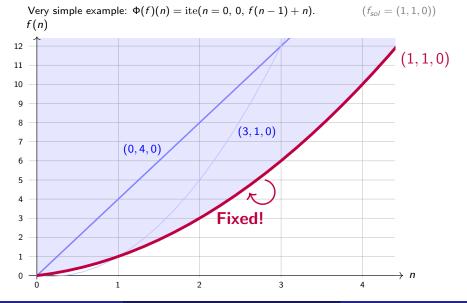
Polynomial bounds – Example



troduction Abstract Lattices of Functions Abstract Domains of Sequences

Abstract Domains of Functions

Polynomial bounds – Example



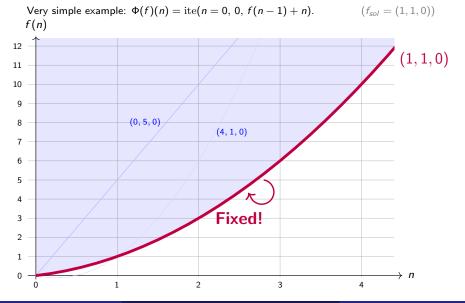
Louis Rustenholz et al.

CSV, June 5th, 2025 19 / 26

0

Abstract Domains of Functions

Polynomial bounds – Example



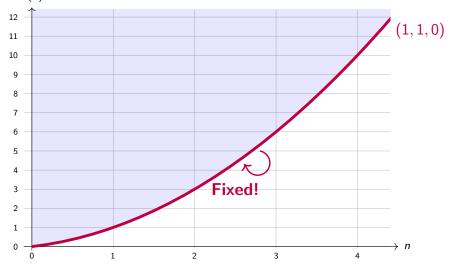
Louis Rustenholz et al.

CSV, June 5th, 2025 19 / 26

0

Polynomial bounds - Example

Very simple example:
$$\Phi(f)(n) = ite(n = 0, 0, f(n - 1) + n).$$
 $(f_{sol} = (1, 1, 0))$
 $f(n)$



Beyond polynomials – exponential polynomials

Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

$$\beta : \mathbb{R}^{5}_{+} \to \mathfrak{B} \subseteq (\mathbb{N} \to \mathbb{R}_{+})$$
$$M, a, b, a', b') \mapsto \left(n \mapsto [v \mapsto a \times v + b] \left([v \mapsto a' \times v + b']^{(n)}(M) \right) \right)$$

- Intended to be a classical "non-relational" value domain (for filters, floats,...): attach a function bound on each variable, parametric in the value of a local loop counter.
- Coordinate-wise □, □, addition, …
- Simple operations for scalar +/×, next (~Push), projection, ...

Beyond polynomials – exponential polynomials

Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

$$\beta : \mathbb{R}^{5}_{+} \to \mathfrak{B} \subseteq (\mathbb{N} \to \mathbb{R}_{+})$$
$$M, a, b, a', b') \mapsto \left(n \mapsto [v \mapsto a \times v + b] \left([v \mapsto a' \times v + b']^{(n)}(M) \right) \right)$$

- Intended to be a classical "non-relational" value domain (for filters, floats,...): attach a function bound on each variable, parametric in the value of a local loop counter.
- Coordinate-wise \sqsubseteq , \sqcup , addition, ...
- Simple operations for scalar +/×, next (~Push), projection, ...

Shift-friendly exponentials: Stirling numbers of the 2nd kind [Kahn&Hoffmann20].

• Replace basis $1, 2^n, 3^n, ...$ by $\binom{n}{1}, \binom{n}{2}, \binom{n}{3}, \binom{n}{4}, ...$

<i>(n</i>)	k ⁿ	$\binom{n+1}{n}$
$\binom{n}{k} \sim_{n \to \infty}$	$\tilde{k!}$	$\binom{n+1}{k} = k \binom{n}{k} + \binom{n}{k-1}$

• Extends well to multivariate settings.

Beyond polynomials – exponential polynomials

Adding exponentials: the domain of arithmetico-geometric sequences [Feret05].

$$\beta : \mathbb{R}^{5}_{+} \to \mathfrak{B} \subseteq (\mathbb{N} \to \mathbb{R}_{+})$$
$$M, a, b, a', b') \mapsto \left(n \mapsto [v \mapsto a \times v + b] \left([v \mapsto a' \times v + b']^{(n)}(M) \right) \right)$$

- Intended to be a classical "non-relational" value domain (for filters, floats,...): attach a function bound on each variable, parametric in the value of a local loop counter.
- Coordinate-wise \sqsubseteq , \sqcup , addition, ...
- Simple operations for scalar +/×, next (~Push), projection, ...

Shift-friendly exponentials: Stirling numbers of the 2nd kind [Kahn&Hoffmann20].

• Replace basis $1, 2^n, 3^n, ...$ by $\binom{n}{1}, \binom{n}{2}, \binom{n}{3}, \binom{n}{4}, ...$

$${n \atop k} \sim_{n \to \infty} \frac{k^n}{k!} \qquad \qquad {n+1 \atop k} = k {n \atop k} + {n \atop k-1}$$

• Extends well to multivariate settings.

Going beyond — exponential polynomials.

- Replace basis $n \mapsto b^n \cdot n^k$ by $n \mapsto {n \choose b} {n \choose k}$
- $[Pop]^{\sharp}$ still works well, and $[Push c]^{\sharp}$ can be synthesised as before.

$${n+1 \choose b}{n+1 \choose k} = b{n \choose b}{n \choose k} + b{n \choose b}{n \choose k-1} + {n \choose b-1}{n \choose k} + {n \choose b-1}{n \choose k-1}$$

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators

CSV, June 5th, 2025 20 / 26

Discussion: Transfer Function Synthesis, Widenings, ...,

Partial conclusion

For such sequence domains (useful for loops, equations, recursive functions, streams, ...)

- → Non-linearity is natural and reasonably easy to achieve.
- → Embrace regularity of functions vs arbitrary relations.
- → Important enabler: **convexity** properties of $\{b \in \mathfrak{B} \mid \bigwedge_n f(n) \leq b(n)\}$

(vs $\{\phi \in \mathfrak{C} \mid \bigwedge_p \phi(p)\}$? Could we actually reuse some of these ideas for relations?).

Discussion: Transfer Function Synthesis, Widenings, ...

Partial conclusion

For such sequence domains (useful for loops, equations, recursive functions, streams, ...)

- → Non-linearity is natural and reasonably easy to achieve.
- → Embrace regularity of functions vs arbitrary relations.
- → Important enabler: **convexity** properties of $\{b \in \mathfrak{B} \mid \bigwedge_n f(n) \leq b(n)\}$

(vs $\{\phi \in \mathfrak{C} \mid \bigwedge_p \phi(p)\}$? Could we actually reuse some of these ideas for relations?).

Widenings

We have not discussed widenings. They are crucial. Our idea is

- Use stability ∇ + thresholds, parameter-wise (within \mathfrak{B}),
- On $\mathcal{P}_{\uparrow}(\mathfrak{B})$: bound the number of constraints, drop/join above max cardinality,
- Perhaps default to "fixed constraints"? "local fixpoints".
- → Can we do better? Is this appropriate?

Discussion: Transfer function synthesis

- Still, design of transfer functions for a new \mathfrak{B} is the main bottleneck in creation of such abstract domains (more burdensome than other postfixpoint search methods, e.g. optimisation-based).
- Transfer function synthesis may be the right tool.
 We were able to generate several automatically via CAS + SMT, and more still in interactive loops.
- → Can we streamline this synthesis process?
- Extra precision: generate transfers for small combinations of basic constructs, [[s₁ ∘ s₂ ∘ ...][#] vs {[[s_i][#]}.

CSV, June 5th, 2025 21 / 26

Abstract Domains of Functions

Introducing more complex features: Multiple variables, disjunctivity, non-trivial recursive structure...

Multivariate functions

When the boundaries form a vector space $\mathfrak{B} = \bigoplus_k \mathbb{R} \cdot f_k$ extended with top elements, as often before, it is easy to move on from $\mathbb{N} \to \overline{\mathbb{R}}$ to $\mathbb{N}^d \to \overline{\mathbb{R}}$.

Do a (tensor) product, and do products of coordinate-wise orders (for parameters).

$$\mathfrak{B}^{\otimes d} := \bigotimes_{i < d} \bigoplus_{k} \mathbb{R} \cdot f_{k}^{(i)} = \bigoplus_{k_{1}, \dots, k_{d}} \mathbb{R} \cdot f_{k_{1}}^{(1)} \otimes \dots \otimes f_{k_{d}}^{(d)}$$

Example

Monovariate polynomials $\mathbb{R}[n]$ in the monomial basis $P(n) = \sum_k a_k n^k$ simply give rise to multivariate polynomials $\mathbb{R}[x, y] = (\mathbb{R}[n])^{\otimes 2}$ in the monomial basis $P(x, y) = \sum a_{k_x, k_y} x^{k_x} y^{k_y}$.

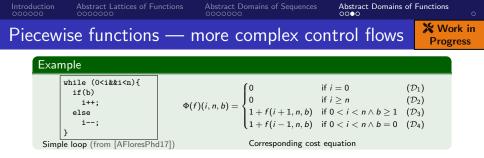
Transfer functions $(\llbracket \Diamond \rrbracket^{\sharp}, \llbracket Cst \ c \rrbracket^{\sharp}, etc.)$ are easily extended. We can similarly define (and compose) $\llbracket Pop_k \rrbracket^{\sharp}$ and $\llbracket Push_k \ c \rrbracket^{\sharp}$ on each dimension,

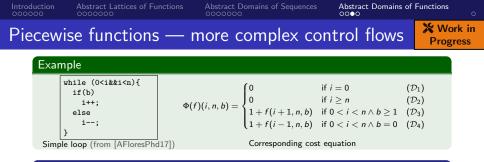
e.g., Push_y c: $f(x, y, z) \rightsquigarrow ite(y = 0, c, f(x, y - 1, z))$.

Example

For polynomials, $1 \cdot (x+1)^2 yz = (x^2+2x+1)yz = 1 \cdot x^2 yz + 2 \cdot xyz + 1 \cdot yz$. Similarly, in the binomial basis, $\binom{x+1}{k_x}\binom{y}{k_y}\binom{z}{k_z} = \binom{x}{k_x}\binom{y}{k_y}\binom{z}{k_z} + \binom{x}{k_x-1}\binom{y}{k_y}\binom{z}{k_z}$, so more generally

$$\llbracket \operatorname{Pop}_{x} \rrbracket^{\sharp} \Big(\sum a_{(k_{x},k_{y},k_{z})} \binom{x}{k_{x}} \binom{y}{k_{y}} \binom{z}{k_{z}} \Big) = \left\{ \sum \left(a_{(\mathbf{k}_{x},k_{y},k_{z})} + a_{(\mathbf{k}_{x}+1,k_{y},k_{z})} \right) \binom{x}{k_{x}} \binom{y}{k_{y}} \binom{z}{k_{z}} \right\}.$$





Piecewise function domains (closely related to BDT domains [Urban&Mine14])

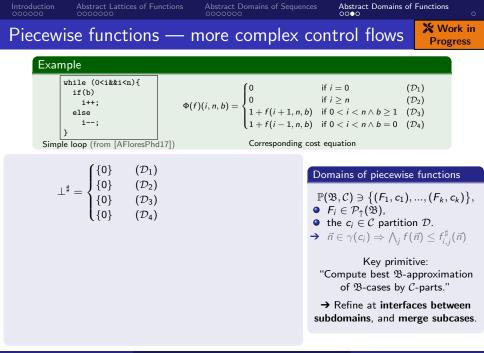
Sets of \mathfrak{B} -bounds by C-cases, where C is a constraint domains (e.g. polyhedra, etc.). $\mathbb{P}(\mathfrak{B}, C) \ni \{(F_1, c_1), ..., (F_k, c_k)\}$, s.t.

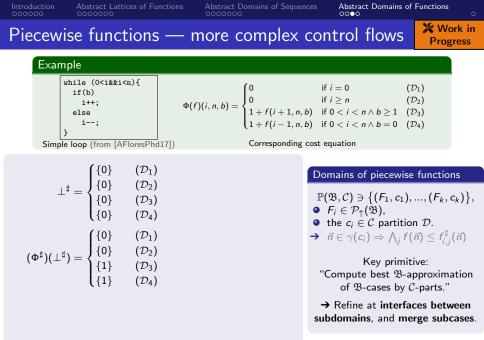
- $F_i \in \mathcal{P}_{\uparrow}(\mathfrak{B})$,
- the $c_i \in C$ partition the input space \mathcal{D} .
- → Instead of one conjunction of bounds, piecewise conjunction of bounds.

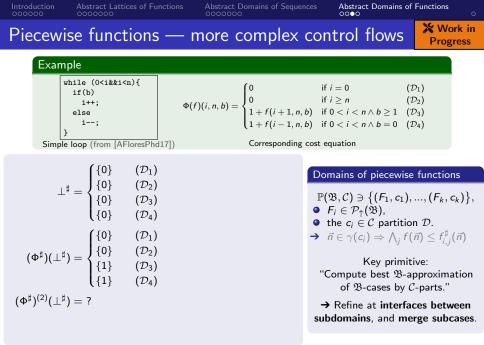
Key primitive: ability to **merge cases**, i.e. "Compute best B-approximation of B-cases by C-parts."

Louis Rustenholz et al.

Abstractions of Sequences, Functions and Operators



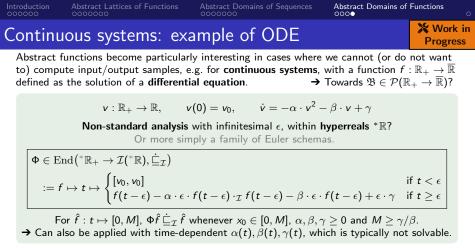


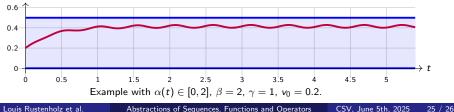


Introduction Abstract Lattices of Functions Abstract Domains 0000000 00000000000000000000000000000	of Sequences Abstract Domains of Functions
Piecewise functions — more comp	olex control flows Work in Progress
Example	
}	$ \begin{array}{ll} \text{if } i = 0 & (\mathcal{D}_1) \\ \text{if } i \geq n & (\mathcal{D}_2) \\ (i+1,n,b) & \text{if } 0 < i < n \land b \geq 1 & (\mathcal{D}_3) \\ (i-1,n,b) & \text{if } 0 < i < n \land b = 0 & (\mathcal{D}_4) \end{array} $
Simple loop (from [AFloresPhd17]) Corres	sponding cost equation
$(\Phi^{\sharp})(\perp^{\sharp}) = egin{cases} \{0\} & (\mathcal{D}_1) \ \{0\} & (\mathcal{D}_2) \ \{1\} & (\mathcal{D}_3) \ \{1\} & (\mathcal{D}_4) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Domains of piecewise functions $\mathbb{P}(\mathfrak{B}, \mathcal{C}) \ni \{(F_1, c_1),, (F_k, c_k)\},$ • $F_i \in \mathcal{P}_{\uparrow}(\mathfrak{B}),$ • the $c_i \in \mathcal{C}$ partition $\mathcal{D}.$ • $\vec{n} \in \gamma(c_i) \Rightarrow \bigwedge_j f(\vec{n}) \leq f_{i,j}^{\sharp}(\vec{n})$
$(\Phi\circ\Phi^{\sharp})(\perp^{\sharp}) = egin{cases} 0 & (\mathcal{D}_1) \ 0 & (\mathcal{D}_2) \ 2 & ext{if} \ (i,n,b)\in\mathcal{D}_3\wedge(i+1,n,b) \ 1 & ext{if} \ (i,n,b)\in\mathcal{D}_3\wedge(i+1,n,b) \ 2 & ext{if} \ (i,n,b)\in\mathcal{D}_4\wedge(i-1,n,b) \ 2 & ext{if} \ (i,n,b)\in\mathcal{D}_4\wedge(i-1,n,b) \ \end{cases}$	

Introduction Abstract Lattices of Functions Abstract	$\begin{array}{ccc} \text{Domains of Sequences} & \text{Abstract Domains of Functions} \\ \text{OO} & \text{OO} & \text{OO} \end{array}$
Piecewise functions — more	complex control flows Work in Progress
Example while (0 <i&&i<n) {<br="">if(b) i++; else i; } Simple loop (from [AFloresPhd17])</i&&i<n)>	$= \begin{cases} 0 & \text{if } i = 0 & (\mathcal{D}_1) \\ 0 & \text{if } i \ge n & (\mathcal{D}_2) \\ 1 + f(i+1, n, b) & \text{if } 0 < i < n \land b \ge 1 & (\mathcal{D}_3) \\ 1 + f(i-1, n, b) & \text{if } 0 < i < n \land b = 0 & (\mathcal{D}_4) \end{cases}$ Corresponding cost equation
$(\Phi \circ \Phi^{\sharp})(\perp^{\sharp}) = egin{cases} 0 & (\mathcal{D}_{1}) \ 0 & (\mathcal{D}_{2}) \ 2 & ext{if} \ (i,n,b) \in \mathcal{D}_{3} \wedge (i+1 & ext{if} \ (i,n,b) \in \mathcal{D}_{3} \wedge (i+1 & ext{if} \ (i,n,b) \in \mathcal{D}_{4} \wedge (i-2 & ext{if} \ (i,n,b) \in \mathcal$	1, n, b) $\in \mathcal{D}_{3}$ 1, n, b) $\in \mathcal{D}_{2}$ 1, n, b) $\in \mathcal{D}_{2}$ 1, n, b) $\in \mathcal{D}_{1}$ 1, n, b) $\in \mathcal{D}_{4}$ $\Rightarrow \vec{n} \in \gamma(c_{i}) \Rightarrow \bigwedge_{j} f(\vec{n}) \leq f_{i,j}^{\sharp}(\vec{n})$ Key primitive: "Compute best \mathfrak{B} -approximation of \mathfrak{B} -cases by C -parts." \Rightarrow Refine at interfaces between subdomains, and merge subcases.

troduction Abstract Lattices of Functions Abstract Domains of Sequences		Abstract Domains of Functions 00●0 0	
Piecewise functions —	- more complex c	control flows	X Work in Progress
Example while (0 <i&&i<n){< th=""><th>(0</th><th>$if i = 0 \qquad (\mathcal{T}$</th><th>21)</th></i&&i<n){<>	(0	$if i = 0 \qquad (\mathcal{T}$	21)
if(b) i++; else i; } Simple loop (from [AFloresPhd17])	$\Phi(f)(i, n, b) = \begin{cases} 0 \\ 0 \\ 1 + f(i + 1, n, b) \\ 1 + f(i - 1, n, b) \end{cases}$ Corresponding co		(2) (2) (2) (2) (2) (2)
$\begin{pmatrix} 0 & (\mathcal{D}_1) \\ 0 & (\mathcal{D}_2) \end{pmatrix}$		Domains of piecewise	functions
$(\Phi \circ \Phi^{\sharp})(\perp^{\sharp}) = egin{cases} 0 & (\mathcal{D}_1) \ 0 & (\mathcal{D}_2) \ 2 & ext{if } (i,n,b) \ 1 & ext{if } (i,n,b) \ 2 & ext{if $	$egin{aligned} &\in \mathcal{D}_3 \wedge (i+1,n,b) \in \mathcal{D}_3 \ &\in \mathcal{D}_3 \wedge (i+1,n,b) \in \mathcal{D}_2 \ &\in \mathcal{D}_4 \wedge (i-1,n,b) \in \mathcal{D}_1 \ &\in \mathcal{D}_4 \wedge (i-1,n,b) \in \mathcal{D}_4 \end{aligned}$	$\mathbb{P}(\mathfrak{B}, \mathcal{C}) \ni \{(F_1, c_1), 0 \in F_i \in \mathcal{P}_{\uparrow}(\mathfrak{B}), 0 \text{ the } c_i \in \mathcal{C} \text{ partition} \\ \Rightarrow \vec{n} \in \gamma(c_i) \Rightarrow \bigwedge_j f(n)$	ו $\mathcal{D}.$
$(\Phi^{\sharp})^{(2)}(\bot^{\sharp}) = \begin{cases} \{0\} & (\mathcal{D}_{1}) \\ \{0\} & (\mathcal{D}_{2}) \\ \{n-i\} & (\mathcal{D}_{3}) \\ \{i\} & (\mathcal{D}_{4}) \end{cases}$ $\leftrightarrow f_{sol}(i, n, b) !$		Key primiti "Compute best ℬ-ap of ℬ-cases by C → Refine at interfac subdomains, and mer	oproximation -parts." c es between
$\rightarrow I_{sol}(I, II, D)$			

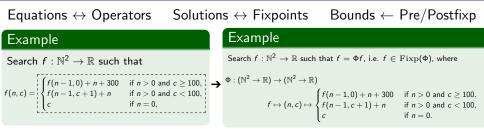




Thank you!

Questions?

Order theory framework of equations [SAS24]



For a complete lattice, order $\mathcal{D} \to \mathbb{R}$ pointwise, and extend to $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$

Theorem

Let $\Phi : (\mathcal{D} \to \overline{\mathbb{R}}) \to (\mathcal{D} \to \overline{\mathbb{R}})$ be a monotone equation.

• If
$$f \in \text{Postfp}(\Phi)$$
, i.e. $\Phi f \leq f$, then $\operatorname{lfp} \Phi \leq f$.

• If
$$f \in \operatorname{Prefp}(\Phi)$$
, i.e. $f \leq \Phi f$, then $f \leq \operatorname{gfp} \Phi$.

Insight: cost equations are typically monotone for this pointwise order, (and terminating $\rightsquigarrow lfp \Phi = gfp \Phi$).